212 research outputs found
Recommended from our members
Radiation fluxes in a business district of Shanghai, China
Radiative fluxes are key drivers of surface-atmosphere heat exchanges in cities. Here the first year-long (December 2012 – November 2013) measurements of the full radiation balance for a dense urban site in Shanghai are presented, collected with a net radiometer CNR4 mounted 80 m above ground. Clear sky incoming shortwave radiation (K↓) (median daytime maxima) ranges from 575 W m-2 in winter to 875 W m-2 in spring, with cloud cover reducing the daily maxima by about 160 W m-2. The median incoming longwave radiation daytime maxima is 305 and 468 W m-2 in winter and summer, respectively, with increases of 30 and 15 W m-2 for cloudy conditions. The effect of air quality is evident: ‘haze’ conditions decrease hourly median K↓ by 11.3%. The midday (11:00 -13:00 LST) clear sky surface albedo (α) is 0.128, 0.141, 0.143 and 0.129 for winter, spring, summer and autumn, respectively. α varies with solar elevation and azimuth angle due to heterogeneity of the urban surface. In winter, shadows play an important role in decreasing α in the late afternoon. For the site, the bulk α is 0.14. The NARP/SUEWS land surface model reproduces the radiation components at this site well, a promising result for applications elsewhere. These observations help to fill the gap of long-term radiation measurements in East Asian and low-latitude cities quantifying the effects of season, cloud cover and air quality
Recommended from our members
A new model to downscale urban and rural surface and air temperatures evaluated in Shanghai, China
A simple model, TsT2m (Surface Temperature and near surface air Temperature (at 2 m) model), is developed to downscale numerical model output (such as from ECMWF) to obtain higher temporal and spatial resolution surface and near surface air temperature. It is evaluated in Shanghai, China. Surface temperature (TS) and near surface air temperature (Ta) sub-models account for variations in land covers and their different thermal properties, resulting in spatial variations of surface and air temperature. The Net All Wave Radiation Parameterization (NARP) scheme is used to compute net wave radiation for the surface temperature sub-model, the Objective Hysteresis Model (OHM) is used to calculate the net storage heat fluxes, and the surface temperature is obtained by the force-restore method. The near surface air temperature sub-model considers the horizontal and vertical energy changes for a column of well mixed air above the surface. Modeled surface temperatures reproduce the general pattern of MODIS images well, while providing more detailed patterns of the surface urban heat island. However, the simulated surface temperatures capture the warmer urban land cover and are 10.3°C warmer on average than those derived from the coarser MODIS data. For other land cover types values are more similar. Downscaled, higher temporal and spatial resolution air temperatures are compared to observations at 110 Automatic Weather Stations across Shanghai. After downscaling with the TsT2m model, the average forecast accuracy of near surface air temperature is improved by about 20%. The scheme developed has considerable potential for prediction and mitigation of urban climate conditions, particularly for weather and climate services related to heat stres
Recommended from our members
Urban integrated meteorological observations: practice and experience in Shanghai, China
Observations of atmospheric conditions and processes in citiesare fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality and climate models, and providing key information for city end-users (e.g. decision-makers, stakeholders, public). In this paper, Shanghai's urban integrated meteorological observation network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being: multi- purpose (e.g. forecast, research, service), multi-function (high impact weather, city climate, special end-users), multi-scale (e.g. macro/meso-, urban-, neighborhood, street canyon), multi-variable (e.g. thermal, dynamic, chemical, bio-meteorological, ecological), and multi- platform (e.g. radar, wind profiler, ground-based, satellite based, in-situ observation/ sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments; to identify data gaps based on science and user driven requirements; and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere
Recommended from our members
Evaluation of the Surface Urban Energy and Water balance Scheme (SUEWS) at a dense urban site in Shanghai: sensitivity to anthropogenic heat and irrigation
The Surface Urban Energy and Water balance Scheme (SUEWS) is used to investigate the impact of anthropogenic heat flux (QF) and irrigation on surface energy balance partitioning in a central business district of Shanghai. Diurnal profiles of QF are carefully derived based on city-specific hourly electricity consumption data, hourly traffic data and dynamic population density. QF is estimated to be largest in summer (mean daily peak 236 W m-2). When QF is omitted, the SUEWS sensible heat flux (QH) reproduces the observed diurnal pattern generally well, but the magnitude is underestimated compared to observations for all seasons. When QF is included, the QH estimates are improved in spring, summer and autumn, but poorer in winter indicating winter QF is overestimated. Inclusion of QF has little influence on the simulated latent heat flux (QE), but improves the storage heat flux estimates except in winter. Irrigation, both amount and frequency, has a large impact on QE. When irrigation is not considered, the simulated QE is underestimated for all seasons. The mean summer daytime QE is largely overestimated compared to observations under continuous irrigation conditions. Model results are improved when irrigation occurs with a 3-day frequency, especially in summer. Results are consistent with observed monthly out-door water use. This study highlights the importance of appropriately including the QF and irrigation in urban land surface models - terms not generally considered in many previous studies
The Predictive Potentiality of Salivary Microbiome for the Recurrence of Early Childhood Caries
The aim of this study was to investigate the variation of the salivary microbiota in the recurrence of early childhood caries (ECC), and to explore and verify the potential microbial indicators of ECC recurrence. Saliva samples from kindergarten children were tracked every 6 months for 1 year. Finally, in total 28 children and 84 samples were placed on the analysis phase: 7 children with ECC recurrence made up the ECC-recurrence (ER) group, 6 children without ECC recurrence constituted the non-ECC-recurrence (NER) group, and 15 children who kept ECC-free were set as the ECC-free (EF) group. DNA amplicons of the V3-V4 hypervariable region of the bacterial 16S rDNA were generated and sequencing was performed using Illumina MiSeq PE250 platform. No statistically significant differences of the Shannon indices were found in both cross-sectional and longitudinal comparisons. Furthermore, both principal coordinates analysis (PCoA) and heatmap plots demonstrated that the salivary microbial community structure might have potentiality to predict ECC recurrence at an early phase. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga differed significantly between the ER and NER groups at baseline. The values of area under the curve (AUC) of the four genera and their combined synthesis in the prediction for ECC recurrence were 0.857, 0.833, 0.786, 0.833, and 0.952, respectively. The relative abundance of Fusobacterium, Prevotella, Leptotrichia, and Capnocytophaga and their combination showed satisfactory accuracy in the prediction for ECC recurrence, indicating that salivary microbiome had predictive potentiality for recurrence of this disease. These findings might facilitate more effective strategy to be taken in the management of the recurrence of ECC
Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data
Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states
A measurement of CP-violating observables associated with the interference
of B0 → D0K⋆
(892)0 and B0 → D¯ 0K⋆
(892)0 decay amplitudes is performed in the
D0 → K∓π
±(π
+π
−), D0 → π
+π
−(π
+π
−), and D0 → K+K− fnal states using data collected
by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1
. CP-violating
observables related to the interference of B0
s → D0K¯ ⋆
(892)0 and B0
s → D¯ 0K¯ ⋆
(892)0 are also
measured, but no evidence for interference is found. The B0 observables are used to constrain
the parameter space of the CKM angle γ and the hadronic parameters r
DK⋆
B0 and δ
DK⋆
B0 with
inputs from other measurements. In a combined analysis, these measurements allow for four
solutions in the parameter space, only one of which is consistent with the world average
Parameter Sensitivity Analysis and Optimization of the Single-Layer Urban Canopy Model in the Megacity of Shanghai
In order to meet the demand of more refined urban weather forecast, it is of great practical significance to improve and optimize the single-layer urban canopy model (SLUCM) suitable for the megacity of Shanghai. In this paper, based on the offline SLUCM model driven by a whole-year surface flux observation data in the Shanghai central business district, a series of parameter sensitivity tests are carried out by using the one at a time (OAT) method, the relative importance and a set of optimized parameters of the SLUCM suitable for high-density urban area are established, and the improvement of simulation is evaluated. The results show that SLUCM well reproduces the seasonal mean diurnal patterns of the net all-wave radiation flux (Q∗) and sensible heat flux (QH) but underestimates their magnitudes. Both Q∗ and QH are linearly sensitive to the albedo, and most sensitive to the roof albedo, the second to the wall albedo, but relatively insensitive to the road albedo. The sensitivity of Q∗ and QH to emissivity is not as strong as that of albedo, and the variation trend is also linear. Similar to albedo, Q∗ and QH are most sensitive to roof emissivity. The effect of thermal parameters (heat capacity and conductivity) on fluxes is logarithmic. The sensitivity of surface fluxes to geometric parameters has no specific variation pattern. After parameter optimization, RMSE of Q∗ decreases by about 3.4–18.7 Wm−2 in four seasons. RMSE of the longwave radiation (L↑) decreases by about 1.2–7.87 Wm−2. RMSE of QH decreases by about 2–5 Wm−2. This study provides guidance for future development of the urban canopy model parameterizations and urban climate risk response
The weakening effect of urbanization on tropical cyclone surface winds : An observational study for Shanghai
The observation-reanalysis difference method (OMR) and wind profile fitting method were used to analyze the influence urbanization has on the near-surface wind speed in Shanghai during tropical cyclone events. The data used include daily wind speed data from the Shanghai Meteorological Observatory Station collected from 1991 to 2020, hourly wind speed data from 100 m high wind towers from 2017 to 2019, and reanalysis data that covered the same period. The results indicated that during tropical cyclone occurrence, the wind speed of the OMR in the central urban region was significantly lower than that in the suburban area, and the OMR declined more obviously over the year, down to −8 m/s in 2020. Urbanization leads to the increase of average wind weakening rate to be higher than the maximum wind weakening rate, causing the maximum weakening rate of the central urban region to the average wind over 80%, while maximum wind speed was less than 80%. The weakening rate of both the average and maximum wind speeds during tropical cyclone impacts is greater than the rate that the annual average wind speed was reduced. A logarithmic variation was visible in the wind profile of the island station during tropical cyclone occurrence, with an average friction velocity U∗ of 0.9389 m/s and an average rough length Z0 of 0.4915 m. The wind speed during tropical cyclone events was higher than the three-year average wind speed within each layer. The suburban stations show a linear variation, and every hundred meters of height results in an increase of 5–6 m/s in the wind speed change rate. At 100 m of altitude, the wind speed in the suburban region is reduced by approximately 40%
Numerical Studies on the Influence of Building Morphology on Urban Canopy Wind Speed
Abstract Buildings increase the urban surface roughness and reduce near‐surface wind speeds in the urban canopy due to the drag effect. Urban heat storage and other effects cause urban warming as well, which decreases the urban boundary layer stability and enhances the turbulence exchange between upper and lower layer. As upper momentum is transported downward, the wind speed of urban canopy increases. Quantitative descriptions of these mechanisms are still lacking currently. This paper presents high‐resolution numerical simulation results of a mega city, Shanghai, China from 2016 to 2020 using the building effect parameterization in WRF (WRF‐BEP) with urban morphological parameters. The dynamic and thermal effects of building morphology on urban canopy wind speed were separated and their quantitative expression functions were given. The results indicate that the influence of building morphology on urban canopy wind speed is mainly dynamic resulting in a wind speed attenuation of approximately 50% and nearly constant. The thermal effect of building morphology on urban canopy wind speed increases with the urban heat island intensity, and the thermal effect could increase urban canopy wind speed by about 30% under the condition of strong urban heat island. The relative contributions of the dynamic and thermal effects of building morphology to urban canopy wind speed change with the wind speed. As wind speed increases, the contribution of the thermal effect of building morphology to urban canopy wind speed gradually decreases. This paper provides a quantitative relationship between the urban canopy wind speed variation and urban morphology, as well as urban heat island intensity
- …