33 research outputs found

    Thermoelectric figure of merit of tau-type conductors of several donors

    Full text link
    Dimensionless thermoelectric figure of merit ZTZT is investigated for two-dimensional organic conductors τ(EDOS,SDMEDTTTF)2(AuI2)1+y\tau-(EDO-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}, τ\tau-(EDT-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}and and \tau(PS,SDMEDTTTF)2(AuI2)1+y-(P-S,S-DMEDT-TTF)_2(AuI_2)_{1+y} (y0.875y \le 0.875), respectively. The ZTZT values were estimated by measuring electrical resistivity, thermopower and thermal conductivity simultaneously. The largest ZTZT is 2.7 ×\times 102^{-2} at 155 K for τ(EDTS,SDMEDTTTF)2(AuI2)1+y\tau-(EDT-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}, 1.5 ×\times 102^{-2} at 180 K for τ(EDOS,SDMEDTTTF)2(AuI2)1+y\tau-(EDO-S,S-DMEDT-TTF)_2(AuI_2)_{1+y} and 5.4 ×\times 103^{-3} at 78 K for τ(PS,SDMEDTTTF)2(AuI2)1+y\tau-(P-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}, respectively. Substitution of the donor molecules fixing the counter anion revealed EDT-S,S-DMEDT-TTF is the best of the three donors to obtain larger ZTZT.Comment: proceedings of ISCOM 2009 (to be published in Physica B

    Design and analysis of DLS steel/composite thick-adhernd adhesive joints

    No full text
    The paper describes experimental and numerical techniques to study the structural design and behaviourof thick-adherend DLS joints that are based on steel /steel and steel/composites and epoxy adhesives, withfocus on long overlap joints. A standard fabrication method was followed to produce 60 specimens of various dimensions and materials

    Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance

    Get PDF
    Magnetic hyperthermia (MH) based on magnetic nanoparticles (MNPs) is a promising adjuvant therapy for cancer treatment. Particle clustering leading to complex magnetic interactions affects the heat generated by MNPs during MH. The heat efficiencies, theoretically predicted, are still poorly understood because of a lack of control of the fabrication of such clusters with defined geometries and thus their functionality. This study aims to correlate the heating efficiency under MH of individually coated iron oxide nanocubes (IONCs) versus soft colloidal nanoclusters made of small groupings of nanocubes arranged in different geometries. The controlled clustering of alkyl-stabilized IONCs is achieved here during the water transfer procedure by tuning the fraction of the amphiphilic copolymer, poly(styrene-co-maleic anhydride) cumene-terminated, to the nanoparticle surface. It is found that increasing the polymer-to-nanoparticle surface ratio leads to the formation of increasingly large nanoclusters with defined geometries. When compared to the individual nanocubes, we show here that controlled grouping of nanoparticles - so-called "dimers" and "trimers" composed of two and three nanocubes, respectively - increases specific absorption rate (SAR) values, while conversely, forming centrosymmetric clusters having more than four nanocubes leads to lower SAR values. Magnetization measurements and Monte Carlo-based simulations support the observed SAR trend and reveal the importance of the dipolar interaction effect and its dependence on the details of the particle arrangements within the different clusters

    Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries

    Get PDF
    The paper is devoted to the study of the effect of thermal annealing on the change in the structural properties and phase composition of metal Co nanostructures, as well as the prospects of their use as anode materials for lithium-ion batteries. During the study, a four-stage phase transition in the structure of nanowires consisting of successive transformations of the structure (Со-FCC/Co-HCP) → (Со-FCС) → (Со-FCC/СоСо2О4) → (СоСо2О4), accompanied by uniform oxidation of the structure of nanowires with an increase in temperature above 400 °C. In this case, an increase in temperature to 700 °C leads to a partial destruction of the oxide layer and surface degradation of nanostructures. During life tests, it was found that the lifetime for oxide nanostructures exceeds 500 charge/discharge cycles, for the initial nanostructures and annealed at a temperature of 300 °С, the lifetimes are 297 and 411 cycles, respectively. The prospects of using Co/CoCo2O4 nanowires as the basis for lithium-ion batteries is shown. © 2019, The Author(s)

    LOAD CAPACITY OF SANDWICH PANEL WITH CORE FOAM EVALUATED BY 3-POINT BENDING TEST

    No full text
    The classification society Bureau Veritas requires a structural assessment of composite materials structures to confirm the compliance with applicable rules, like 3-point bending tests. However, for sandwich panels with a low-density foam core, local phenomena like indentation and wrinkling may occur in the upper face sheet at the loading punch, thus the intended load capacity of the sandwich panel will not be reached. It is then proposed to perform complementary shear tests to capture the behaviour of the core of the sandwich panel. In the present paper, the load capacity in a 3-point bending test is simulated with emphasis on the influence of the constitutive modelling of the core foam, as calibrated against experimental results for shear tests. It is carried out as a benchmark exercise, with participation from three universities. The FE-simulations show that the shear test can be used to accurately model the load capacity of the core foam. However, for the 3-point bending test using specimen with a very high panel length/thickness ratio a large part of the load transfer is done in the upper face sheet with less involvement of shear in the core. Although core fracture is observed in the experiments, both the FE-simulated and experimentally found maximum load agree well with the load capacity as determined from analytical formula for local failure in the upper face sheet. The FE-simulated vertical displacement at maximum load differs though
    corecore