119 research outputs found

    Cellular Basis of Aging in the Mammalian Heart

    Get PDF
    This review is concerned with the functional and structural changes occurring in the aging heart. These changes were investigated in an integrated fashion in Fischer 344 rats at 4, 12, 20, and 29 months after birth. Mean arterial pressure, left ventricular systolic and end-diastolic pressures, as well as stroke volume remained substantially constant up to 20 months. At 29 months, however, end-diastolic pressure was significantly increased, and dP/dt and stroke volume were depressed. Focal areas of interstitial and replacement fibrosis were markedly increased at 20 and 29 months, mostly in the subendocardial region of the ventricular wall. Also the aggregate number of mononucleated and binucleated cells in the left ventricle as a function of age was determined. The number of mononucleated cells increased up to 20 months but decreased thereafter; the binucleated cells showed a reversed pattern. The aging process of the heart involves a number of interrelated events including biochemical, electrical, mechanical and structural modifications. With aging and senescence, left ventricular failure develops in the Fischer rat model, and a similar process may occur in the human as well

    Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review

    Get PDF
    The quantitative structural properties of the ventricular myocardium during postnatal physiologic growth are compared with those accompanying an increased load in the adult rat heart to determine whether induced cardiac hypertrophy is a pathologic condition or simply a form of well compensated accelerated growth. The expansion of the ventricular myocardium during maturation shows a remarkable degree of well balanced compensatory response, because the capillary microvasculature, parenchymal cells and subcellular components of myocytes all grow in proportion to the increase in cardiac mass. In contrast, the increases in myocyte diameter and length caused by pressure hypertrophy, volume hypertrophy and infarction-induced hypertrophy are consistent with concentric, eccentric and a combination of concentric and eccentric hypertrophic growth of the whole ventricle, respectively.These cellular shape changes may represent a compensatory response of the myocardium at the cellular level of organization that tends to minimize the effects of an increased pressure or volume load, or both, on the heart. Cardiac hypertrophy, however, may also show alterations affecting capillary luminal volume and surface and the mitochondrial to myofibril volume ratio, which indicate an inadequate growth adaptation of the component structures responsible for tissue oxygenation and energy production. Thus, hypertrophy of the adult heart differs from that during physiologic growth, and the hypertrophied myocardium may exhibit structural abnormalities that can be expected to increase its vulnerability to ischemia

    Alcohol Dehydrogenase Accentuates Ethanol-Induced Myocardial Dysfunction and Mitochondrial Damage in Mice: Role of Mitochondrial Death Pathway

    Get PDF
    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH).ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis

    Reduction in Kv Current Enhances the Temporal Dispersion of the Action Potential in Diabetic Myocytes: Insights From a Novel Repolarization Algorithm

    Get PDF
    BACKGROUND: Diabetes is associated with prolongation of the QT interval of the electrocardiogram and enhanced dispersion of ventricular repolarization, factors that, together with atherosclerosis and myocardial ischemia, may promote the occurrence of electrical disorders. Thus, we tested the possibility that alterations in transmembrane ionic currents reduce the repolarization reserve of myocytes, leading to action potential (AP) prolongation and enhanced beat-to-beat variability of repolarization. METHODS AND RESULTS: Diabetes was induced in mice with streptozotocin (STZ), and effects of hyperglycemia on electrical properties of whole heart and myocytes were studied with respect to an untreated control group (Ctrl) using electrocardiographic recordings in vivo, ex vivo perfused hearts, and single-cell patch-clamp analysis. Additionally, a newly developed algorithm was introduced to obtain detailed information of the impact of high glucose on AP profile. Compared to Ctrl, hyperglycemia in STZ-treated animals was coupled with prolongation of the QT interval, enhanced temporal dispersion of electrical recovery, and susceptibility to ventricular arrhythmias, defects observed, in part, in the Akita mutant mouse model of type I diabetes. AP was prolonged and beat-to-beat variability of repolarization was enhanced in diabetic myocytes, with respect to Ctrl cells. Density of Kv K(+) and L-type Ca(2+) currents were decreased in STZ myocytes, in comparison to cells from normoglycemic mice. Pharmacological reduction of Kv currents in Ctrl cells lengthened AP duration and increased temporal dispersion of repolarization, reiterating features identified in diabetic myocytes. CONCLUSIONS: Reductions in the repolarizing K(+) currents may contribute to electrical disturbances of the diabetic heart

    Gender differences and aging: Effects on the human heart

    Get PDF
    Objectives.This study investigated the changes in myocyte size and number in the left and right ventricles that occur with aging in the female and male heart.Background.Differences in life span between women and men may be related to a better preservation of myocardial structure in the female heart with aging. On this basis, the hypothesis was advanced that the aging process has a different impact on the integrity of the myocardium in the two genders.Methods.Morphometric methodologies were applied to analyze the changes in number and size of ventricular myocytes in the hearts of 53 women and 53 men. The changes in mononucleated and binucleated myocytes with age were determined in enzymatically dissociated cells. The age interval examined varied from 17 to 95 years.Results.Aging was associated with a preservation of ventricular myocardial mass, aggregate number of mononucleated and binucleated myocytes, average cell diameter and volume in the female heart. In contrast, nearly 1 g/year of myocardium was lost in the male heart, and this phenomenon accounted for the loss of ∼64 million cells. This detrimental effect involved the left and right sides of the heart. In the remaining cells, myocyte cell volume increased at a rate of 158 μm3/year in the left and 167 μm3/year in the right ventricle.Conclusions.Aging does not lead to myocyte cell loss and myocyte cellular reactive hypertrophy in women, indicating that gender differences may play a significant role in the detrimental effects of the aging process on the heart

    Hyperglycemia Activates p53 and p53-Regulated Genes Leading to Myocyte Cell Death

    Get PDF
    To determine whether enzymatic p53 glycosylation leads to angiotensin II formation followed by p53 phosphorylation, prolonged activation of the renin-angiotensin system, and apoptosis, ventricular myocytes were exposed to levels of glucose mimicking diabetic hyperglycemia. At a high glucose concentration, O-glycosylation of p53 occurred between 10 and 20 min, reached its peak at 1 h, and then decreased with time. Angiotensin II synthesis increased at 45 min and 1 h, resulting in p38 mitogen-activated protein (MAP) kinase–driven p53 phosphorylation at Ser 390. p53 phosphorylation was absent at the early time points, becoming evident at 1 h, and increasing progressively from 3 h to 4 days. Phosphorylated p53 at Ser 18 and activated c-Jun NH2-terminal kinases were identified with hyperglycemia, whereas extracellular signal-regulated kinase was not phosphorylated. Upregulation of p53 was associated with an accumulation of angiotensinogen and AT1 and enhanced production of angiotensin II. Bax quantity also increased. These multiple adaptations paralleled the concentrations of glucose in the medium and the duration of the culture. Myocyte death by apoptosis directly correlated with glucose and angiotensin II levels. Inhibition of O-glycosylation prevented the initial synthesis of angiotensin II, p53, and p38-MAP kinase (MAPK) phosphorylation and apoptosis. AT1 blockade had no influence on O-glycosylation of p53, but it interfered with p53 phosphorylation; losartan also prevented phosphorylation of p38-MAPK by angiotensin II. Inhibition of p38-MAPK mimicked at a more distal level the consequences of losartan. In conclusion, these in vitro results support the notion that hyperglycemia with diabetes promotes myocyte apoptosis mediated by activation of p53 and effector responses involving the local renin-angiotensin system

    Comparative Study of Immune Regulatory Properties of Stem Cells Derived from Different Tissues.

    No full text
    International audience: Allogeneic stem cell (SC)-based therapy is a promising tool for the treatment of a range of human degenerative and inflammatory diseases. Many reports highlighted the immune modulatory properties of some SC types, such as mesenchymal stromal cells (MSCs), but a comparative study with SCs of different origin, to assess whether immune regulation is a general SC property, is still lacking. To this aim, we applied highly standardized methods employed for MSC characterization to compare the immunological properties of bone marrow-MSCs, olfactory ectomesenchymal SCs, leptomeningeal SCs, and three different c-Kit-positive SC types, that is, amniotic fluid SCs, cardiac SCs, and lung SCs. We found that all the analyzed human SCs share a common pattern of immunological features, in terms of expression of activation markers ICAM-1, VCAM-1, HLA-ABC, and HLA-DR, modulatory activity toward purified T, B, and NK cells, lower immunogenicity of inflammatory-primed SCs as compared to resting SCs, and indoleamine-2,3-dioxygenase-activation as molecular inhibitory pathways, with some SC type-related peculiarities. Moreover, the SC types analyzed exert an anti-apoptotic effect toward not-activated immune effector cells (IECs). In addition, we found that the inhibitory behavior is not a constitutive property of SCs, but is acquired as a consequence of IEC activation, as previously described for MSCs. Thus, immune regulation is a general property of SCs and the characterization of this phenomenon may be useful for a proper therapeutic use of SCs

    Rescue of neonatal cardiac dysfunction in mice by administration of cardiac progenitor cells in utero

    Get PDF
    Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg−/− mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg−/− foetal hearts. CPCs harvested from Speg−/− mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg−/− mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg−/− mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases

    Efficient Non-Viral Reprogramming of Myoblasts to Stemness with a Single Small Molecule to Generate Cardiac Progenitor Cells

    Get PDF
    The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules

    Quantification of Circulating Endothelial Progenitor Cells Using the Modified ISHAGE Protocol

    Get PDF
    Circulating endothelial progenitor cells (EPC), involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data.In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS)), EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dim)CD34(+) cells were quantified for KDR. A minimum of 100 CD34(+) events were collected. For comparison, CD45(+)CD34(+) and CD45(-)CD34(+) were analysed simultaneously. The number of CD45(dim)CD34(+)KDR(+) cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend). An inverse correlation of CD45(dim)CD34(+)KDR(+) with disease activity (r = -0.475, p<0.001) was confirmed. Only CD45(dim)CD34(+)KDR(+) correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005). In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dim)CD34(+)KDR(+) EPC (p<0.05). CD45(+)CD34(+)KDR(+) and CD45(-)CD34(+)KDR(+) were indifferent between the three groups.Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous findings with respect to the correlation of EPC with disease activity and the increase of EPC during statin therapy. The data of this study show the CD45(dim) fraction to harbour EPC
    • …
    corecore