288 research outputs found

    Uncovering the sources of DNA found on the Turin Shroud

    Get PDF
    The Turin Shroud is traditionally considered to be the burial cloth in which the body of Jesus Christ was wrapped after his death approximately 2000 years ago. Here, we report the main findings from the analysis of genomic DNA extracted from dust particles vacuumed from parts of the body image and the lateral edge used for radiocarbon dating. Several plant taxa native to the Mediterranean area were identified as well as species with a primary center of origin in Asia, the Middle East or the Americas but introduced in a historical interval later than the Medieval period. Regarding human mitogenome lineages, our analyses detected sequences from multiple subjects of different ethnic origins, which clustered into a number of Western Eurasian haplogroups, including some known to be typical of Western Europe, the Near East, the Arabian Peninsula and the Indian sub-continent. Such diversity does not exclude a Medieval origin in Europe but it would be also compatible with the historic path followed by the Turin Shroud during its presumed journey from the Near East. Furthermore, the results raise the possibility of an Indian manufacture of the linen cloth

    Palaeogenomics: Mitogenomes and Migrations in Europe’s Past

    Get PDF
    The latest in a series of transformative studies of DNA from prehistoric Europeans focuses on mitochondrial DNA, bringing fresh surprises and filling in important details of the early stages of a European ancestry stretching back more than 40,000 years

    Arrival of Paleo-Indians to the Southern Cone of South America: New Clues from Mitogenomes

    Get PDF
    With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (mtDNA) variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j) whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l) and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11–13,000 years) appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking grou

    The Multifaceted Origin of Taurine Cattle Reflected by the Mitochondrial Genome

    Get PDF
    A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius) is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA) control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3) of Near Eastern ancestry, but also identifying eight mtDNAs (1.3%) that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R) which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare) taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved

    Does mitochondrial DNA predispose to neuromyelitis optica (Devic's disease)?

    Get PDF
    Neuromyelitis optica (NMO), or Devic's disease, is a relapsing demyelinating disease of the central nervous system characterized by optic neuritis and myelitis with distinct clinical, imaging, CSF and serological features (Wingerchuk et al. , 2006). There is increasing evidence that NMO is an antibody-mediated organ-specific autoimmune disease associated with anti-aquaporin 4 antibodies detectable in serum (Lennon et al. , 2004), supported by four recent papers in the same edition of Brain (Matsuoka et al. , 2007; Misu et al. , 2007; Roemer et al. , 2007; Takahashi et al. , 2007) and the accompanying scientific commentary (Compston, 2007). However, it is still not known why the disorder specifically targets the optic nerves and spinal cord. Several siblings with NMO have been reported (McAlpine, 1938; Keegan and Weinshenker, 2000; Yamakawa et al. , 2000), raising the possibility of a genetic predisposition, but no pathogenic mutations have been identified in the AQP4 gene on chromosome 18q11.2-q12.1 (Lu et al. , 1996). NMO has similarities with Leber hereditary optic neuropathy (LHON, MIM 535 000) which is primarily due to mutations of mitochondrial DNA (mtDNA) that disrupt complex I of the respiratory chain (Carelli et al. , 2004). Although the genetic defect in LHON is present in all tissues, the pathology also is strikingly tissue-specific. Most affected individuals develop sub-acute painless visual failure due to focal involvement of both optic nerves (Newman et al. , 1991; Riordan-Eva et al. , 1995), but some also develop a progressive myelopathy, with high signal extending over multiple spinal levels on MR imaging, and the absence of oligoclonal bands in the CSF (Johns et al. , 1991; Jaros et al. , 2007). Tissue-specific susceptibility to mitochondrial dysfunction is thought to explain why the neurodegeneration in LHON only affects specific neuronal

    The phylogeny of the four pan-American MtDNA haplogroups: Implications for evolutionary and disease studies

    Get PDF
    Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrast with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.Instituto Multidisciplinario de Biología CelularFacultad de Ciencias Naturales y Muse

    Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber's hereditary optic neuropathy

    Get PDF
    AbstractThe possibility that some combinations of mtDNA polymorphisms, previously associated with Leber's hereditary optic neuropathy (LHON), may affect mitochondrial respiratory function was tested in osteosarcoma-derived transmitochondrial cytoplasmic hybrids (cybrids). In this cellular system, in the presence of the same nuclear background, different exogenous mtDNAs are used to repopulate a parental cell line previously devoid of its original mtDNA. No detectable differences in multiple parameters exploring respiratory function were observed when mtDNAs belonging to European haplogroups X, H, T and J were used. Different possible explanations for the previously established association between haplogroup J and LHON 11778/ND4 and 14484/ND6 pathogenic mutations are discussed, including the unconventional proposal that mtDNA haplogroup J may exert a protective rather than detrimental effect

    Mendelian breeding units <i>versus</i> standard sampling strategies: mitochondrial DNA variation in southwest Sardinia

    Get PDF
    We report a sampling strategy based on Mendelian Breeding Units (MBUs), representing an interbreeding group of individuals sharing a common gene pool. The identification of MBUs is crucial for case-control experimental design in association studies. The aim of this work was to evaluate the possible existence of bias in terms of genetic variability and haplogroup frequencies in the MBU sample, due to severe sample selection. In order to reach this goal, the MBU sampling strategy was compared to a standard selection of individuals according to their surname and place of birth. We analysed mitochondrial DNA variation (first hypervariable segment and coding region) in unrelated healthy subjects from two different areas of Sardinia: the area around the town of Cabras and the western Campidano area. No statistically significant differences were observed when the two sampling methods were compared, indicating that the stringent sample selection needed to establish a MBU does not alter original genetic variability and haplogroup distribution. Therefore, the MBU sampling strategy can be considered a useful tool in association studies of complex traits

    Analysis of the human Y-chromosome haplogroup Q characterizes ancient population movements in Eurasia and the Americas

    Get PDF
    Background: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. Results: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. Conclusions: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples
    • …
    corecore