150 research outputs found

    Shadows and cavities in protoplanetary disks: HD163296, HD141569A, and HD150193A in polarized light

    Full text link
    The morphological evolution of dusty disks around young (few Myr-old) stars is pivotal to better understand planet formation. Since both dust grains and the global disk geometry evolve on short timescale, high-resolution imaging of a sample of objects may provide important hints towards such an evolution. We enlarge the sample of protoplanetary disks imaged in polarized light with high-resolution by observing the Herbig Ae/Be stars HD163296, HD141569A, and HD150193A. We integrate our data with previous datasets to paint a larger picture of their morphology. We report a weak detection of the disk around HD163296 in both H and Ks band. The disk is resolved as a broken ring structure with a significan surface brightness drop inward of 0.6 arcsec. No sign of extended polarized emission is detected from the disk around HD141569A and HD150193A. We propose that the absence of scattered light in the inner 0.6 arcsec around HD163296 and the non-detection of the disk around HD150193A may be due to similar geometric factors. Since these disks are known to be flat or only moderately flared, self-shadowing by the disk inner wall is the favored explanation. We show that the polarized brightness of a number of disks is indeed related to their flaring angle. Other scenarios (such as dust grain growth or interaction with icy molecules) are also discussed. On the other hand, the non-detection of HD141569A is consistent with previous datasets revealing the presence of a huge cavity in the dusty disk.Comment: 10 pages, 5 figures; accepted by Astronomy & Astrophysic

    Can a planet explain different cavity sizes for small & large dust grains in transition disks?

    Get PDF
    Dissimilarities in the spatial distribution of small (μm-size) and large (mm-size) dust grains at the cavity edge of transition disks have been recently pointed out and are now under debate. We obtained VLT/NACO near-IR polarimetric observations of SAO 206462 (HD 135344B). The disk around the star shows very complex structures, such as dips and spirals. We also find an inner cavity much smaller than what is inferred from sub-mm images. The interaction between disk and orbiting companion(s) may explain this discrepanc

    The protoplanetary disk of FT Tauri: multi-wavelength data analysis and modeling

    Get PDF
    Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. Several theoretical and observational studies have been performed in the last decades to advance this knowledge. FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion and ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. We performed a multi-wavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG-Dolores, WHT-Liris, NOT-Notcam, Keck-Nirspec, and Herschel-Pacs spectra. From the literature, we compiled a complete Spectral Energy Distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multi-wavelengths spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content and typical size.Comment: 16 pages, 9 figures, accepted for publication in A&

    Small vs large dust grains in transitional disks: do different cavity sizes indicate a planet?

    Get PDF
    Transitional disks represent a short stage of the evolution of circumstellar material. Studies of dust grains in these objects can provide pivotal information on the mechanisms of planet formation. Dissimilarities in the spatial distribution of small (micron-size) and large (millimeter-size) dust grains have recently been pointed out. Constraints on the small dust grains can be obtained by imaging the distribution of scattered light at near-infrared wavelengths. We aim at resolving structures in the surface layer of transitional disks (with particular emphasis on the inner 10 - 50 AU), thus increasing the scarce sample of high resolution images of these objects. We obtained VLT/NACO near-IR high-resolution polarimetric differential imaging observations of SAO 206462 (HD135344B). This technique allows one to image the polarized scattered light from the disk without any occulting mask and to reach an inner working angle of 0.1''. A face-on disk is detected in H and Ks bands between 0.1'' and 0.9''. No significant differences are seen between the H and Ks images. In addition to the spiral arms, these new data allow us to resolve for the first time an inner cavity for small dust grains. The cavity size (about 28 AU) is much smaller than what is inferred for large dust grains from (sub)mm observations (39 to 50 AU). The interaction between the disk and potential orbiting companion(s) can explain both the spiral arm structure and the discrepant cavity sizes for small and large dust grains. One planet may be carving out the gas (and, thus, the small grains) at 28 AU, and generating a pressure bump at larger radii (39 AU), which holds back the large grains. We analytically estimate that, in this scenario, a single giant planet (with a mass between 5 and 15 Jupiter masses) at 17 to 20 AU from the star is consistent with the observed cavity sizes.Comment: 11 pages, 6 figures; accepted for publication in A&

    Detection of Sharp Symmetric Features in the Circumbinary Disk Around AK Sco

    Full text link
    The Search for Planets Orbiting Two Stars (SPOTS) survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ~13--40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.Comment: 10 pages, 3 figures, accepted for publication in ApJ Letters. Minor (proof-level) corrections implemented in this versio

    Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    Get PDF
    High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Disk evolution can be constrained from the comparison of disks with different properties. A first attempt of disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in Polarimetric Differential Imaging, which is the most efficient technique to image the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Three Group II disks are detected. The brightness distribution in the disk of HD163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (less than 100 AU) disk is detected around HD142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (larger than 5 AU). There is no evidence supporting the evolution from Group I to Group II. Group II are not evolved version of the Group I. Within the Group II disks, very different geometries (both self-shadowed and compact) exist. HD163296 could be the primordial version of a typical Group I. Other Group II, like AK Sco and HD142666, could be smaller counterpart of Group I unable to open cavities as large as those of Group I.Comment: 16 pages, 7 figures, published by A&

    Near-IR observations of the young star [BHB2007]-1: A sub-stellar companion opening the gap in the disk

    Full text link
    The presence of planets or sub-stellar objects still embedded in their native protoplanetary disks is indirectly suggested by disk sub-structures like gaps, cavities, and spirals. However, these companions are rarely detected. We present VLT/NACO high-contrast images in JJ, HH, KSK_S, and L′L^{\prime} band of the young star [BHB2007]-1 probing the inclined disk in scattered light and revealing the probable presence of a companion. The point source is detected in the L′L^{\prime} band in spatial correspondence with complementary VLA observations. This object is constrained to have a mass in the range of 37-47 MJup_{Jup} and is located at 50 au from the central star, inside the 70 au-large disk cavity recently imaged by ALMA, that is absent from our NACO data (down to 20 au). This mass range is compatible with the upper end derived from the size of the ALMA cavity. The NIR disk brightness is highly asymmetric around the minor axis, with the southern side 5.5 times brighter than the northern side. The constant amount of asymmetry across all wavelengths suggests that it is due to a shadow cast by a misaligned inner disk. The massive companion that we detect could, in principle, explain the possible disk misalignment, as well as the different cavity sizes inferred by the NACO and ALMA observations. The confirmation and characterization of the companion is entrusted to future observations.Comment: 9 pages, 5 figures, 3 tables. Accepted for publication on Ap

    Detection rate for significant cancer at confirmatory biopsy in men enrolled in Active Surveillance protocol: 20 cores vs 30 cores vs MRI/TRUS fusion prostate biopsy

    Get PDF
    Introduction: The detection rate for significant prostate cancer of extended vs saturation vs mMRI/TRUS fusion biopsy was prospectively evaluated in men enrolled in active surveillance (AS) protocol. Mterials and methods: From May 2013 to September 2016 75 men aged 66 years (median) with very low risk PCa were enrolled in an AS protocol and elegible criteria were: life expectancy greater than 10 years, cT1C, PSA below 10 ng/ml, PSA density &lt; 0.20, 2 &lt; unilateral positive biopsy cores, Gleason score (GS) equal to 6, greatest percentage of cancer (GPC) in a core &lt; 50%. All patients underwent 3.0 Tesla pelvic mpMRI before confirmatory transperineal extended (20 cores) or saturation biopsy (SPBx; 30 cores) combined with mpMRI/TRUS fusion targeted biopsy (4 cores) of suspicious lesions (PI-RADS 3-5). Results: 21/75 (28%) patients were reclassified by SPBx based on upgraded GS ≥ 7; mpMRI lesions PI-RADS 4-5 vs PI-RADS 3-5 diagnosed 9/21 (42.8%) vs 16/21 (76.2%) significant PCa with 2 false positives (6.5%). The detection rate for significant PCa was equal to 76.2% (mpMRI/TRUS fusion biopsy) vs 81% (extended) vs 100% (SPBx) (p = 0.001); mpMRI/TRUS targeted biopsy and extended biopsy missed 5/21 (23.8%) and 4/21 (19%) significant PCa which were found by SPBx (p = 0.001) being characterised by the presence of a single positive core of GS ≥ 7 with GPC &lt; 10%. Conclusions: Although mpMRI improve the diagnosis of clinically significant PCa, SPBx is provided of the best detection rate for PCa in men enrolled in AS protocols who underwent confirmatory biopsy
    • …
    corecore