767 research outputs found

    The Education Quality Agency of Chile: A comprehensive evaluation policy?

    Full text link
    Este artículo analiza el sistema de evaluación de la educación de Chile surgido a partir de la reforma de 2009. La hipótesis de este trabajo plantea que La Agencia de Calidad de la Educación no es un sistema de evaluación integral, como lo afirman sus documentos y leyes del país, sino una reforma basada en estándares que ha empobrecido el currículum nacional, influenciado negativamente el trabajo docente, donde predomina el carácter fiscalizador y el énfasis en los resultados de pruebas estandarizadas, subordinando la orientación para el logro de una formación integral de los estudiantes. Resultado propio de sistemas influenciados por los procesos de globalización y mercantilización de la educaciónThis article analyzes the education evaluation system in Chile that emerged from the reform of 2009. The hypothesis of this work suggests that the Quality of Education Agency is not a system of integral evaluation, as it is affirmed by its documents and laws of the country, but rather it is a reform based on standards that have impoverished the national curriculum, negatively influenced the teaching profession, where the control character dominates and the emphasis is on the results of standardized tests, subordinating the orientation for the achievement of a comprehensive training of students. Resulting in systems influenced by the globalization processes and commercialization of educatio

    Job Schedulers for Machine Learning and Data Mining algorithms distributed in Hadoop

    Get PDF
    The standard scheduler of Hadoop does not consider the characteristics of jobs such as computational demand, inputs / outputs, dependencies, location of the data, etc., which could be a valuable source to allocate resources to jobs in order to optimize their use. The objective of this research is to take advantage of this information for planning, limiting the scope to ML / DM algorithms, in order to improve the execution times with respect to existing schedulers. The aim is to improve Hadoop job schedulers, seeking to optimize the execution times of machine learning and data mining algorithms in Clusters.Facultad de Informátic

    Job Schedulers for Machine Learning and Data Mining algorithms distributed in Hadoop

    Get PDF
    The standard scheduler of Hadoop does not consider the characteristics of jobs such as computational demand, inputs / outputs, dependencies, location of the data, etc., which could be a valuable source to allocate resources to jobs in order to optimize their use. The objective of this research is to take advantage of this information for planning, limiting the scope to ML / DM algorithms, in order to improve the execution times with respect to existing schedulers. The aim is to improve Hadoop job schedulers, seeking to optimize the execution times of machine learning and data mining algorithms in Clusters.Facultad de Informátic

    Job Schedulers for Machine Learning and Data Mining algorithms distributed in Hadoop

    Get PDF
    The standard scheduler of Hadoop does not consider the characteristics of jobs such as computational demand, inputs / outputs, dependencies, location of the data, etc., which could be a valuable source to allocate resources to jobs in order to optimize their use. The objective of this research is to take advantage of this information for planning, limiting the scope to ML / DM algorithms, in order to improve the execution times with respect to existing schedulers. The aim is to improve Hadoop job schedulers, seeking to optimize the execution times of machine learning and data mining algorithms in Clusters.Facultad de Informátic

    Factores Asociados a complicaciones médicas en pacientes diabéticos tipo II. Distrito VI Managua. Años 2000-2006.

    Get PDF
    La presencia de factores de riesgo en pacientes con Diabetes Mellitus Tipo II se asocian a la aparición de complicaciones médicas y fármaco terapéuticas

    Aprendizaje virtual de las matemáticas

    Get PDF

    Flexibilidad fenotípica en juveniles del lenguado Paralichthys orbignyanus (Valenciennes, 1839): modulación diferencial de enzimas digestivas y reservas de energía en relación a la dieta

    Get PDF
    El lenguado Paralichthys orbignyanus es un pez plano de gran importancia ecológica y económica que habita principalmente en estuarios y aguas costeras del Atlántico sudoccidental. Faltan estudios integrativos sobre modulación de enzimas digestivas, reservas de energía y crecimiento en relación a diferentes dietas. Determinamos la actividad de amilasa, maltasa, sacarasa, tripsina, aminopeptidasa-N (APN) y lipasa en intestino y el contenido de glucógeno, triglicéridos y proteínas en hígado y músculo de juveniles alimentados con dos dietas comerciales (Dieta 1; carbohidratos 35.5%, proteínas 41%, lípidos 13.6%; Dieta 2; carbohidratos 41.8%, proteínas 46%, lípidos 2.8%). Juveniles alimentados con Dieta 2 exhibieron una mayor actividad de maltasa, sacarasa y tripsina (54%, 39%, 110%), menor contenido de triglicéridos en hígado y músculo (65%, 14%), menor contenido de proteínas en hígado (35%) y mayor ganancia de peso. La actividad de amilasa, APN y lipasa, glucógeno y glucosa libre en hígado y músculo y proteínas en músculo fueron similares. La modulación diferencial de enzimas digestivas y reservas de energía sugiere ajustes digestivos y metabólicos que permitirían el crecimiento bajo dieta con alto contenido de carbohidratos y bajo de lípidos. Este trabajo contribuye al conocimiento sobre fisiología digestiva y metabólica de peces de importancia económica para la región.The flounder Paralichthys orbignyanus is a flatfish of great ecological and economic importance that lives mainly in estuaries and coastal waters in Southwest Atlantic. Integrative studies on modulation of digestive enzymes and energy reserves along with growth upon differential proportions of key dietary substrates are lacking. We determined amylase, maltase, sucrase, trypsin, aminopeptidase-N (APN) and lipase activities in intestine and glycogen, triglycerides and proteins concentration in liver and muscle of juveniles fed with two diets (Diet 1; 35.5% carbohydrates, 41% proteins, 13.6% lipids; Diet 2; 41.8% carbohydrates, 46% proteins, 2.8% lipids). Juveniles fed with Diet 2 exhibited higher maltase, sucrase and trypsin activity (54%, 39% and 110%), lower triglycerides concentration in liver and muscle (65% and 14%), lower proteins content in liver (35%) and higher weight gain. Amylase, APN and lipase activity, glycogen and free glucose in liver and muscle and proteins in muscle were similar. The differential modulation of digestive enzymes and energy reserves suggest specific digestive and metabolic adjustments allowing growth upon diet with high carbohydrate and low lipids content. This work contributes to the knowledge of digestive and metabolic physiology of flatfishes which are of importance for the development of activities with economic impact in our region.Fil: Albanesi, Camila Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Radonic, Mariela. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Lopez, Hugo Alejandro. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Lopez Mañanes, Alejandra Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Density and phenology of the invasive mealybug Delottococcus aberiae on citrus: implications for integrated pest management

    Full text link
    [EN] Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a new invasive citrus pest in Spain. It causes severe fruit distortions and, as a new invasive mealybug, there is a lack of information about its biology. This research aims to examine the seasonal trend of D. aberiae in citrus, using several sampling methods, as a first step to develop an integrated pest management program. Ten citrus orchards from Eastern Spain were periodically sampled during three years using absolute (plant material) and relative (corrugated cardboard band traps and sticky traps) sampling methods. The three sampling methods showed that D. aberiae completes multiple generations per year, two of them being clearly defined and resulting in high populations. D. aberiae peaked between May and June, damaging the developing fruit. Corrugated cardboard band traps were able to detect prepupa and pupa male instars and gravid females, providing a quantitative measurement of D. aberiae density at its first population peak. The use of corrugated cardboard band traps is recommended to monitor population levels and sticky traps to determine male flight periods, representing simple sampling techniques to monitor D. aberiae. These results will improve the sampling protocols and allow for the development of an integrated pest management program.We would like to thank the owners of the orchards for allowing us to use their plantations and P. Bru (IVIA) and J. Catalan (IVIA) for their help in sampling. This research was supported by two predoctoral grants (FPU to V. Martinez-Blay and Val I + d to J. Perez-Rodriguez from the Spanish Ministry of Education, Culture and Sport and Generalitat Valenciana, respectively), the European Grants FP7-IAPP #324475 'Colbics' and FP7-IRSES #612566 'Biomodic,' and a national project provided by INIA (Project No. RTA2014-00067). The authors thank Debra Westall (UPV) for revising the manuscript.Martínez-Blay, V.; Pérez-Rodríguez, J.; Tena, A.; Soto Sánchez, AI. (2018). Density and phenology of the invasive mealybug Delottococcus aberiae on citrus: implications for integrated pest management. Journal of Pest Science. 91(2):625-637. https://doi.org/10.1007/s10340-017-0928-yS625637912Afifi SA (1968) Morphology and taxonomy of the adult males of the families Pseudococcidae and Eriococcidae: (Homoptera:Coccoidea). Bull Br Mus (Nat Hist) Entomol, Suppl 13. LondonAgustí M (2003) Citricultura. Mundi-Prensa, MadridBahder BW, Naidu RA, Daane KM, Millar JG, Walsh DB (2013) Pheromone-based monitoring of Pseudococcus maritimus (Hemiptera:Pseudococcidae) populations in concord grape vineyards. J Econ Entomol 106:482–490. doi: 10.1603/ec12138Bartlett BR, Clancy DW (1972) The comstock mealybug in California and observations on some of its natural enemies. J Econ Entomol 65:1329–1332Beardsley JW (1960) A preliminary study of the males of some hawaiian mealybugs (Homoptera: Pseudococcidae). Proc Hawaii Entomol Soc 16:199–243Beltrà A, Soto A (2012) Pseudocóccidos de importancia agrícola y ornamental en España. Editorial Universitat Politècnica de València, SpainBeltrà A, Soto A, Germain J-F, Matile-Ferrero D, Mazzeo G, Pellizzari G, Russo A, Franco JC, Williams DJ (2010) The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from South America to Europe. Entomol Hellenica 19:137–143Beltrà A, Soto A, Malausa T (2012) Molecular and morphological characterisation of Pseudococcidae surveyed on crops and ornamental plants in Spain. Bull Entomol Res 102:165–172. doi: 10.1017/S0007485311000514Beltrà A, Garcia-Marí F, Soto A (2013a) El cotonet de Les Valls, Delottococcus aberiae, nueva plaga de los cítricos. Levante Agrícola 419:348–352Beltrà A, Garcia-Marí F, Soto A (2013b) Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae). J Econ Entomol 106:1486–1494. doi: 10.1603/ec13024Beltrà A, Tena A, Soto A (2013c) Reproductive strategies and food sources used by Acerophagus n. sp. near coccois, a new successful parasitoid of the invasive mealybug Phenacoccus peruvianus. J Pest Sci 86:253–259. doi: 10.1007/s10340-012-0475-5Beltrà A, Addison P, Avalos JA, Crochard D, Garcia-Mari F, Guerrieri E, Giliomee JH, Malausa T, Navarro-Campos C, Palero F, Soto A (2015) Guiding classical biological control of an invasive mealybug using integrative taxonomy. PLoS ONE 10:e0128685. doi: 10.1371/journal.pone.0128685Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae), with data on geographical distribution, host plants, biology and economic importance. Intercept Limited, AndoverUKBlumberg D, Ben-Dov Y, Mendel Z (1999) The citrulus mealybug, Pseudococcus cryptus Hempel, and its natural enemies in Israel: history and present situation. Entomologica 33:141–152Browning TO (1959) The long-tailed mealybug, Pseudocuccus aonidum (L.), in South Australia. J Agric Res 10:322–339De Lotto G (1961) New Pseudococcidae (Homoptera: Coccoidea) from Africa. Bull Br Mus (Nat Hist) Entomol 10:211–238De Villiers M, Pringle KL (2007) Seasonal occurrence of vine pests in commercially treated vineyards in the Hex River Valley in the Western Cape Province, South Africa. Afr Entomol 15:241–260DeBach P (1949) Population studies of the long-tailed mealybug and its natural enemies on citrus trees in Southern California. Ecology 30:14–25Franco J (1994) Citrus phenology as a basis to study the population dynamics of the citrus mealybug complex in Portugal. In: Tribulato E, Gentile A, Reforgiato G (eds) Proceedings of the international society of citriculture, vol 3, pp 929–930Franco JC, Silva EB, Carvalho JP (2000) Cochonilhas-algodão (Hemiptera, Pseudococcidae) associadas aos citrinos em Portugal. ISA Press, LisboaFranco JC, Suma P, Silva EB, Blumberg D, Mendel Z (2004) Management strategies of mealybug pests of citrus in mediterranean countries. Phytoparasitica 32:507–522Franco JC, Zada A, Mendel Z (2009) Novel approaches for the management of mealybug pests. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests: application and resistance managements. Springer, Netherlands, pp 233–278. doi: 10.1007/978-90-481-2316-2_10Furness G (1976) The dispersal, age-structure and natural enemies of the long-tailed mealybug, Pseudocccus longispinus (Targioni-Tozzetti), in relation to sampling and control. Aust J Zool 24:237–247García-Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: a literature-based model of scale insect biology and systematics. Database (Oxford) 2016:1–5. doi: 10.1093/database/bav118Geiger CA, Daane KM (2001) Seasonal movement and distribution of the grape mealybug (Homoptera: Pseudococcidae): developing a sampling program for San Joaquin Valley vineyards. J Econ Entomol 94:291–301. doi: 10.1603/0022-0493-94.1.291Gonzalez D (1971) Sampling as a basis for pest management strategies. In: Komarek EV (ed) Proceedings of the tall timbers conference on ecological animal control by habitat management, vol 2, pp 83–101Goolsby J, Kirk A, Meyerdirk DE (2002) Seasonal phenology and natural enemies of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Australia. Fla Entomol 85:494–498Grimes E, Cone W (1985) Life history, sex attraction, mating and natural enemies of the grape mealybug, Pseudococcus maritimus (Homoptera: Pseudococcidae). Ann Entomol Soc Am 78:554–558Grout TG, Richards GI (1991) Value of pheromone traps for predicting infectations of red scale Aonidiella aurantii (Maskell) (Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J Appl Entomol 111:20–27Gullan PJ, Martin J (2009) Sternorrhyncha (jumping plant-lice, whiteflies, aphids, and scale insects). In: Vincent H, Resh RTC (eds) Encyclopedia of insects. Elsevier, San Diego, pp 957–967Hall DG, Roda A, Lapointe SL, Hibbard K (2008) Phenology of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Florida based on attraction of adult males to pheromone traps. Fla Entomol 91:305–310Hardy NB, Gullan PJ, Hodgson CJ (2008) A subfamily-level classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data. Syst Entomol 33:51–71Hattingh V, Cilliers C, Bedford E (1998) Citrus mealybugs. In: Bedford E, Van den Berg M, De Villiers E (eds) Citrus pests in the Republic of South Africa. ARC-ITSC, South Africa, pp 112–120Haviland DR, Beede RH, Daane KM (2012) Seasonal phenology of Ferrisia gilli (Hemiptera: Pseudococcidae) in commercial pistachios. J Econ Entomol 105:1681–1687. doi: 10.1603/ec12070Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414. doi: 10.1111/j.1365-2664.2007.01442.xIslam KS, Copland MJW (1997) Host preference and progeny sex ratio in a solitary koinobiont mealybug endoparasitoid, Anagyrus pseudococci (Girault), in response to its host stage. Biocontrol Sci Technol 7:449–456. doi: 10.1080/09583159730857Jervis MA, Copland MJW, Harvey JA (2005) The lyfe-cycle. In: Jervis MA (ed) Insect as natural enemies: a practical perspective. Springer, Dordrecht, pp 73–165Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. In: Langor DW, Sweeney J (eds) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Springer, Netherlands, pp 21–45. doi: 10.1007/978-1-4020-9680-8_3Kozár F (1989) Microhabitat specialization and similarity of scale-insect assemblages on different fruit trees and in different countries. Ecol Entomol 14:175–180Lacirignola C, D’Onghia AM (2009) The Mediterranean citriculture: productions and perspectives. In: D’Onghia AM, Djelouah K, Roistacher CN (eds) Citrus tristeza virus and Toxoptera citricidus: a serious threat to the Mediterranean citrus industry. Options Méditerranéennes: Série B. Etudes et Recherches, vol 65. CIHEAM, Bari, pp 13–17Longo S, Mazzeo G, Russo A (1995) Biological observations on some scale insects (Homoptera: Coccoidea) in Sicily. Isr J Entomol 29:219–222Mansour R, Grissa-Lebdi K, Suma P, Mazzeo G, Russo A (2017) Key scale insects (Hemiptera: Coccoidea) of high economic importance in a Mediterranean area: host plants, bio-ecological characteristics, natural enemies and pest management strategies—a review. Plant Prot Sci 53:1–14. doi: 10.17221/53/2016-ppsMartínez-Ferrer MT, García-Marí F, Ripollés JL (2003) Population dynamics of Planococcus citri (Risso) (Homoptera: Pseudococcidae) in citrus groves in Spain. IOBC-WPRS Bull 26:149–161Martínez-Ferrer MT, Ripollés JL, Garcia-Marí F (2006) Enumerative and binomial sampling plans for citrus mealybug (Homoptera: Pseudococcidae) in citrus groves. J Econ Entomol 99:993–1001. doi: 10.1603/0022-0493-99.3.993Mazzeo G, Russo A, Suma P (1999) Phenacoccus solani ferris (Homoptera: Coccoidea) on ornamental plants in Italy. Boll Zool agr Bachic 31:31–35Mazzeo G, Longo S, Pellizzari G, Porcelli F, Suma P, Russo A (2014) Exotic scale insects (Coccoidea) on ornamental plants in Italy: a never-ending story. Acta Zool Bulg 6:55–61McKenzie HL (1967) Mealybugs of California, with taxonomy, biology, and control of North American species (Homoptera: Coccoidea: Pseudococcidae). Cambridge University Press, BerkeleyMendel Z, Watson GW, Protasov A, Spodek M (2016) First record of the papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Coccomorpha: Pseudococcidae), in the Western Palaearctic. EPPO Bull 46:580–582. doi: 10.1111/epp.12321Meyerdirk DE, Newell IM (1979) Seasonal development and flight activity of Pseudocccus comstocki in California. Ann Entomol Soc Am 72:492–494Meyerdirk DE, Newell IM, Warkentin RW (1981) Biological control of comstock mealybug. J Econ Entomol 74:79–84Meyerdirk DE, Warkentin R, Attavien B, Gersabeck E, Fracis A, Adams M, Francis G (2001) Biological control of pink hibiscus mealybug project manual. United States Department of Agriculture (USDA), WashingtonMillar JG, Daane KM, McElfresh JS, Moreira JA, Malakar-Kuenen R, Guillén M, Bentley WJ (2002) Development and optimization of methods for using sex pheromone for monitoring the mealybug Planococcus ficus (Homoptera: Pseudococcidae) in California vineyards. J Econ Entomol 95:706–771Miller DR, Giliomee JH (2011) Systematic revision of the mealybug genus Delottococcus Cox & Ben-Dov (Hemiptera: Pseudococcidae). Afr Entomol 19:614–640Miller DR, Miller GL, Watson GW (2002) Invasive species of mealybugs (Hemiptera: Pseudococcidae) and their threat to U.S. agriculture. Proc Entomol Soc Wash 104:825–836Moreno DS, Reed DK, Shaw JG, Newell IM (1972) Sex lure survey trap for comstock mealybug. Citograph 58(43):68Moreno DS, Fargerlund J, Ewart WH (1984) Citrus mealybug (Homoptera: Pseudococcidae): behavior of males in response to sex pheromone in laboratory and field. Ann Entomol Soc Am 77:32–38Mudavanhu P (2009) An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. Dissertation, University of StellenboschMudavanhu P, Addison P, Pringle Ken L (2011) Monitoring and action threshold determination for the obscure mealybug Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) using pheromone-baited traps. Crop Prot 30:919–924. doi: 10.1016/j.cropro.2011.02.034Panis A (1986) Biological features of Pseudococcus affinis (Mask.) (Homoptera, Pseudococcidae) as guidelines of its control in water-sprinkled citrus orchards. In: Cavalloro R, Di Martino E (eds) Integrated pest control in citrus groves. Proceedings of the expert’s meetings, pp 59–65Pellizzari G (2005) Cocciniglie nuove o poco note potenzialmente dannose per l’Italia: Fiorinia pinicola Maskell, Pseudococcus comstocki (Kuwana), Peliococcus turanicus (Kiritshenko). Inf Fitopatol 55:20–25Pellizzari G, Germain J-F (2010) Scales (Hemiptera, Superfamily Coccoidea), Chapter 9.3. BioRisk 4:475–510. doi: 10.3897/biorisk.4.45Pellizzari G, Porcelli F (2014) Alien scale insects (Hemiptera Coccoidea) in European and Mediterranean countries: the fate of new and old introductions. Phytoparasitica 42:713–721. doi: 10.1007/s12600-014-0414-5Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20Roltsch WJ, Meyerdirk DE, Warkentin R, Andress ER, Carrera K (2006) Classical biological control of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in southern California. Biol Control 37:155–166. doi: 10.1016/j.biocontrol.2006.01.006Roques A, Rabitsch W, Rasplus J-Y, Lopez-Vaamonde C, Nentwig W, Kenis M (2009) Alien terrestrial invertebrates of Europe. In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer, The Netherlands, pp 63–79. doi: 10.1007/978-1-4020-8280-1Rotundo G, Tremblay E (1975) Sull’attrattività delle femmine vergini di due specie di Pseudococcidi (Homoptera Coccoidea) per un Imenottero parassita (Hymenoptera Chalcidoidea). Boll Lab Entomol Agr Portici 32:172–179Samways MJ (1988) Comparative monitoring of red scale Aonidiella aurantii (Mask.) (Hom., Diaspididae) and its Aphytis spp. (Hym., Aphelinidae) parasitoids. J Appl Entomol 105:483–489Santorini A (1977) Etude de quelques caractères biologiques de Planococcus citri (Risso) en Grèce (Homoptera, Coccoidea, Pseudococcidae). Fruits 32:611–612Serrano MS, Lapointe SL, Meyerdirk DE (2001) Attraction of males by virgin females of the mealybug Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). Popul Ecol 30:339–345Soto A, Martínez-Blay V, Beltrà A, Pérez-Rodríguez J, Tena A (2016a) Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae), comportamiento de la plaga en parcelas de cítricos valencianos. Phytoma 277:49–53Soto A, Martínez-Blay V, Benito M, Beltrà A (2016b) Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae): viabilidad de su control biológico. Phytoma 284:85–87Suckling DM (2000) Issues afecting the use of pheromones and other semiochemicals in orchards. Crop Prot 19:677–683Suma P, Mazzeo G, La Pergola A, Nucifora S, Russo A (2015) Establishment of the pineapple mealybug Dysmicoccus brevipes (Hemiptera: Pseudococcidae) in Italy. EPPO Bull 45:218–220. doi: 10.1111/epp.12206Sun J, Clarke SR, DeBarr GL, Berisford CW (2002) Yellow sticky traps for monitoring males and two parasitoids of Oracella acuta (Lobdell) (Homoptera: Pseudococcidae). J Entomol Sci 37:177–181Tena A, García-Marí F (2011) Current situation of citrus pests and diseases in the Mediterranean basin. IOBC/WPRS Bull 62:365–378Tena A, Catalán J, Bru P, Urbaneja A (2014) Delottococcus aberiae, nueva plaga de cítricos. Agricultura 978:746–748Tena A, García-Bellón J, Urbaneja A (2017) Native and naturalized mealybug parasitoids fail to control the new citrus mealybug pest Delottococcus aberiae. J Pest Sci 90:659–667. doi: 10.1007/s10340-016-0819-7Tremblay E, Tranfaglia A, Rotundo G, Iaccarino F (1977) Osservazioni comparate su alcune specie di Pseudococcidi (Homoptera: Coccoidea). Boll Lab Entomol Agr Portici 34:113–135Walton VM, Daane KM, Pringle KL (2004) Monitoring Planococcus ficus in South African vineyards with sex pheromone-baited traps. Crop Prot 23:1089–1096. doi: 10.1016/j.cropro.2004.03.016Waterworth RA, Redak RA, Millar JG (2011) Pheromone-baited traps for assessment of seasonal activity and population densities of mealybug species (Hemiptera: Pseudococcidae) in nurseries producing ornamental plants. J Econ Entomol 104:555–565. doi: 10.1603/ec10317Way MJ, van Emden HF (2000) Integrated pest management in practice—pathways towards successful application. Crop Prot 19:81–10

    Seasonal Distribution and Movement of the Invasive Pest Delottococcus aberiae (Hemiptera: Pseudococcidae) Within Citrus Tree: Implications for Its Integrated Management

    Full text link
    [EN] Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) is the most recent species of mealybug introduced to Spain that is affecting citrus. The feeding behavior of D. aberiae causes severe direct damage to citrus fruits, distorting their shape and/or causing reduction in size. There is no information available regarding its distribution within the citrus trees. The main objective of this study was to describe the seasonal distribution of D. aberiae within citrus trees and its migration patterns on the plants. Ten citrus orchards from eastern Spain were periodically sampled during 3 yr. In each orchard, the mealybug was sampled in different infested strata (canopy, trunk, and soil) and canopy structures (flower, fruit, leaf, and twig). Results showed that, within the sampled strata, D. aberiae was mostly in the canopy. Within the canopy, the feeding location of D. aberiae changed throughout the year. D. aberiae overwintered in the twigs and moved to the flowers and fruits in spring. Once there, its populations started to increase exponentially until August. From February to September, 5-30% of the mealybugs migrated to the trunk and soil. These results will facilitate an early detection of the pest in the areas where it is spreading and improve sampling protocols and pesticide applications.We thank the owners of the orchards for allowing us to use their plantations, especially Placido Calabuig. We thank Debra Westall (UPV) for English corrections. The authors are also grateful to two anonymous reviewers for helpful comments and corrections. This research was supported by two predoctoral grants (FPU to V.M.-B. and Val I+d to J.P.-R. from the Spanish Ministry of Education, Culture and Sport and Generalitat Valenciana, respectively), a national project provided by Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) (project no. RTA2014-00067) and the European grants FP7-IAPP #324475 'Colbics' and FP7-IRSES #612566 'Biomodic'.Martínez-Blay, V.; Pérez-Rodríguez, J.; Tena Barreda, A.; Soto Sánchez, AI. (2018). Seasonal Distribution and Movement of the Invasive Pest Delottococcus aberiae (Hemiptera: Pseudococcidae) Within Citrus Tree: Implications for Its Integrated Management. Journal of Economic Entomology. 111(6):2684-2692. https://doi.org/10.1093/jee/toy279S26842692111
    corecore