

UWS Academic Portal

Virtual IoT HoneyNets to mitigate cyberattacks in SDN/NFV-enabled IoT networks

Zarca, Alejandro Molina; Bernabe, Jorge Bernal; Skarmeta, Antonia; Alcaraz Calero, Jose M.

Published in:
IEEE Journal on Selected Areas in Communications

DOI:
10.1109/JSAC.2020.2986621

Published: 30/06/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Zarca, A. M., Bernabe, J. B., Skarmeta, A., & Alcaraz Calero, J. M. (2020). Virtual IoT HoneyNets to mitigate
cyberattacks in SDN/NFV-enabled IoT networks. IEEE Journal on Selected Areas in Communications, 38(6),
1262-1277. [9060972]. https://doi.org/10.1109/JSAC.2020.2986621

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 12 Jul 2022

https://doi.org/10.1109/JSAC.2020.2986621
https://uws.pure.elsevier.com/en/publications/75369a0c-bfdd-4cda-aabe-dec6cab290a1
https://doi.org/10.1109/JSAC.2020.2986621

Zarca, A. M., Bernabe, J. B., Skarmeta, A., & Alcaraz Calero, J. M. (2020). Virtual IoT HoneyNets to
mitigate cyberattacks in SDN/NFV-enabled IoT networks. IEEE Journal on Selected Areas in
Communications, 38(6), 1262-1277. [9060972]. https://doi.org/10.1109/JSAC.2020.2986621

“© © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

https://doi.org/10.1109/JSAC.2020.2986621

1

Virtual IoT HoneyNets to mitigate cyberattacks

in SDN/NFV-enabled IoT networks
Alejandro Molina Zarca∗, Jorge Bernal Bernabe∗, Antonio Skarmeta∗,

Jose M. Alcaraz Calero†

∗University of Murcia

{alejandro.mzarca, jorgebernal, skarmeta}@um.es
†University of the West of Scotland

jose.alcaraz-calero@uws.ac.uk

Abstract

As the IoT adoption is growing in several fields, cybersecurity attacks involving low-cost end-

user devices are increasing accordingly, undermining the expected deployment of IoT solutions in a

broad range of scenarios. To address this challenge, emerging Network Function Virtualization (NFV)

and Software Defined Networking (SDN) technologies can introduce new security enablers, thereby

endowing IoT systems and networks with higher degree of scalability and flexibility required to cope

with the security of massive IoT deployments. In this sense, honeynets can be enhanced with SDN

and NFV support, to be applied to IoT scenarios and therefore strengthening the overall security. IoT

honeynets are virtualized services simulating real IoT networks deployments, so that attackers can be

distracted from the real target. In this paper, we present a novel mechanism leveraging SDN and NFV

aimed to autonomously deploy and enforce IoT honeynets. The system follows a security policy-based

approach that facilitates management, enforcement and orchestration of the honeynets and it has been

successfully implemented and tested in the scope of H2020 EU project ANASTACIA, showing its

feasibility to mitigate cyber-attacks.

Index Terms

Cybersecurity, IoT, Honeynet, SDN, NFV, Security Policies

I. INTRODUCTION

The Internet of Things comprises billions of heterogeneous devices interacting each other and

generating enormous assorted data traffic. Constrained IoT devices strives to perform their tasks

in potential hostile environments, whereby security and privacy aspects are even more difficult

2

to address with hardware limitations in terms of computational power, memory and battery.

Besides, the low-power wireless connectivity, Machine-to-Machine (M2M) interaction models,

low-cost and unattended deployments, as well as the pervasive and dynamic environments sparks

new security and privacy threats. Diverse types of evolved cyber-attacks such as for instance,

distributed deny of service (DDoS) attack that are making use of infected IoT bots (e.g. mirai),

are starting to appear in IoT [1].

To address this new kind of IoT-based cyber-attacks, diverse scalable security mechanisms

and strategies are emerging to mitigate them [2]. In this regard, honeynets can be used to help

countering cyber-attacks in IoT. Honeynets are comprised of a network of honeypots, which

aim to be used as baseline to detect cyber-attacks (e.g. botnets) and to learn about attackers

behaviors, making them believe that they are accessing to the real network, when they are in

fact, accessing to a simulated, controlled and isolated network.

A highly-interaction honeypot (HIH) honeynet can imitate the activities of the production

network, by hosting a variety of honeypots and services, to which an attacker is redirected to

access to make him wasting his time. This can give some extra time for the real system to

take proper reaction and countermeasures in order to mitigate cyber-attacks and learn for future

attack attempts. HIHs can capture not only the network activity, but also the system activity.

However, HIHs can increase resource consumption in large-scale deployments. Honeynets, and

in turn, honeypots, are not subject to deploy and implement all the services and functionalities

of the production system. Indeed, honeypots usually provide simulations of only certain services

to reduce maintenance cost. Unlike HIH, low-interaction honeypots (LIH) simulates only part of

the network and services. So far honeynets have been studied and applied successfully mainly for

protecting traditional distributed networks and systems, such as Cloud and Grid infrastructures

and services. However, their application to the Internet of things has not yet paid enough attention.

, configure, generate and enforce virtual honeynet is a complex and tedious task, that becomes

even more complex, when the honeynet needs to be adapted on demand to the pervasive

network environment. Therefore, it is necessary to devise an automated framework to configure,

deploy and manage a flexible honeynet. In this paper, we present an autonomic virtual IoT

honeynet deployment mechanism that relies on NFV for orchestration. The use of Network

Function Virtualization (NFV) for honeynets management enables an efficient way of deploying

virtual HIH, empowering dynamic configuration and reconfiguration while maintaining the HIH

configuration equivalent to the real IoT environment deployed in production.

3

Since an IoT network is composed of different sensor nodes, commonly equipped with a

special kind of Operating Systems, such as Contiki OS [3], specially customized for constrained

IoT devices, our proposal is able to set up virtual IoT honeynets on demand, not only as a

proactive measure but also as a reactive countermeasure to mitigate cyber-attacks, emulating a

real IoT network of sensors to which the attacker is redirected. In our proposal, data and control

plane of the honeynet are managed in a centralized way through an Software Defined Networks

(SDN) architecture. The SDN controller is in charge of providing traffic filtering and forwarding

capabilities, as well as a redirection mechanism to divert traffic connections between the real

IoT environment and the virtual one. To the best of our knowledge, this is the first attempt to

define a mechanism to dynamically deploy virtual IoT honeynets through SDN and NFV, that

can emulate a real physical IoT network of devices.

The proposed system has been designed as part of a holistic cyber-security framework that

is being developed in the scope of ANASTACIA EU research project [4]. The ANASTACIA

framework follows a context-awareness approach that can provide support for decision-making,

thanks to the continuous analysis of the network situation provided by the monitoring module.

It endows the system with on-demand dynamic deployment and update of honeypot services for

the virtual IoT honeynet.

The rest of the paper is organized as follows: Section II discusses the state of the art.

Section III introduces the general ANASTACIA security framework. Section IV delves into the

proposed solution for virtual IoT honeynets dynamic deployment through SDN-NFV. Section

V describes the implementation performed for the autonomic deployment of the virtual IoT

honeynets. Section VI reports the experimental results to enforce virtual IoT honeynets through

SDN-NFV. Finally, Section VII concludes the paper with a set of final remarks and presenting

future research lines.

II. RELATED WORK

A. SDN-NFV related work

To achieve confidentiality, integrity and availability with self-healing, and self-repair capabil-

ities in wireless environments, new context-aware and autonomic softwarized frameworks, such

as SELFNET [5] focused on 5G networks, and ANASTACIA targeting IoT networks [6] are

starting to emerge.

4

These frameworks are inspired by SECurity-as-a-Service (SECaaS) [7] approach, that enables

dynamic management of security mechanisms in virtualized and softwarized environments. SDN

and NFV can play key roles to leverage virtual security solution aimed to face the increasing

IoT threats [8], since they provide many advantages to deploy and dynamically migrate security

countermeasures within networks. Indeed, SDN introduces a set of new features that can be

leveraged to provide security: (i) programmability, to enable dynamic deployment of virtual

network secure zones; (ii) visibility of the whole network on the control plane, to simplify

the monitoring and detection of distributed attacks; (iii) dynamic flow control, providing more

flexibility in the implementation of access control functions for security reactions.

Some research efforts have already proposed models for virtualized security services [9]. Bull

et al [10] propose several examples of security applications using SDN, whereas the feasibility

of deploying various SDN-based security functions has been investigated in [11]. Another survey

[12], is focused on SDN strengths and weaknesses against Distributed Denial of Service (DDoS)

attacks in cloud computing environments, topic that is also treated by Choi et al. [13], which

suggest a network architecture where DDoS protection is carried out by limitation of the amount

of flow allowed for the same application per data source.

Regarding SDN in IoT, Xu et al. [14] describe an smart security mechanism to defend

against new flow attacks in SDN-based IoT by using a dynamic access control prior adding

new flows to the SDN-switch. This type of attacks relies on sending packets that are going to be

forwarded to the SDN controller in order to produce a DDoS attack therein. A secure SDN IoT

network architecture, BlackSDN [15], is proposed to increase protection of IoT communications

by encrypting both meta-data and packet payload, using an SDN controller as a trusted third

party. Furthermore, NFV allows for on-demand deployment of virtual security functions within

network, thus allowing security function to be deployed in the appropriate place, avoiding then

traffic rerouting currently happening in classical approaches. Authors in [16] propose the use of

an SDN gateway as an architectural decision to allow the monitoring of traffic originated from and

directed to IoT devices, enabling the detection of anomalous behaviour and then, performing

an appropriate response (blocking, forwarding, or applying Quality of Service). Choi et al.

[17] propose strategies for establishing a security framework based on a software-defined IoT

environment and efficient provision of security services such as authentication, access control, and

lightweight encryption. The aforementioned works do not exploit the NFV benefits to increase

on-demand scalability and dynamic deployment of virtual security functions within the network.

5

The joint use of SDN and NFV security features for IoT is currently at a preliminary stage and

significant efforts are still required to fully exploit their benefits. Furthermore, the integration

with existing security solutions, especially for IoT, is still missing. To this aim, ANASTACIA

EU H2020 project [4] [18] is devising a policy-based security framework for IoT deployments,

capable of taking autonomous decisions, making use of SDN and NFV to provide dynamic

security enforcement based on monitoring methodologies and tools.

B. HoneyNets related Work

The dynamic deployment of honeynets has been already studied in the past. Hecker et al.

[19] proposed a dynamic approach that is capable of setting up LIH with the combination of

both, passive scanning that listens the network traffic, and active scanning, that injects additional

traffic in the network to obtain a more complete assessment of the network. Guerra et al [20]

also describe a low interaction virtual IoT Honeypot which simulates 4 common IoT devices:

camera, printer, video game console and cash registering machine. While defeating scanning, by

providing wrong OS information, the rest of the attack cycle is redirected in a wrong way since

the gathered information is not correct, that it turns the attack unsuccessful. Our goal is similar,

however, our paper is intended to deal with HIH honeynets, rather than LIHs.

multi-purpose IoT honeypot was studied in [21], aimed to analyze some of the existing attack

patterns on IoT systems, and design a honeypot for IoTs that can handle attacks, capturing

attacks coming through four channels: Telnet, SSH, HTTP and CWMP. The captures are then

analyzed to find common patterns and gain intelligence.

Regarding HIH, SIPHON [22] proposes a High-Interaction physical honeypots, that aims

to adapt Honeypots for improving the security of IoTs. They leveraged IoT devices that are

physically deployed and connected through wormholes, which are appealing for attackers and

distributed around the world. Besides, in [23], authors analyse the rise of honeypot sandboxing

analyzing Telnet-based attacks against various IoT devices running on different CPU architectures

and captures malware examples.

Taking advantage of SDN capabilities, Wonkyu Han et al. [24] proposed a SDN-based intelli-

gent honeynet called HoneyMix, which leverages the rich programmability of SDN to circumvent

attackers detection mechanisms and enables fine-grained control of the data path. HoneyMix

establishes multiple connections with a set of honeypots and selects the most desirable connection

to inspire attackers to remain connected.

6

Some of the previous references provide an important contribution about particular IoT honey-

pots solutions. However, unlike them, this paper focuses on HIH honeynets that might replicate

the whole IoT network, not only a particular IoT Honeypot. In that sense, deploying honeynets

in a virtual environment [25] brings many benefits (e.g., maintenance) that a deployment in

a physical environment cannot provide. Traditional virtualization technologies such as Kernel-

based virtual machines (KVM), and lightweight alternatives such as Linux containers (LXC)

[26] have been considered for the dynamic virtual deployment of the honeynets. However, they

have not been applied broadly in Internet of Things.

W.Fan et al. [27] proposed a versatile framework for honeynet deployment to investigate

the attacker’s behavior. Although it is an important advance beyond the state of the art, their

framework does not rely on NFV-SDN and their envisaged honeynets are not intended to cover

IoT scenarios, and also the framework is not managed by means of security policies. In addition,

their honeynets are mainly employed for investigating the attacker, whereas our research focused

also on using the honeynets as Virtual Network Security Function (VNSF), which allows applying

dynamic and timely countermeasures to mitigate cyber-attacks, as part of a broader autonomic

security framework that deals with the security in cyber physical system (CPS) and IoT scenarios.

Finally, Gen-III honeynets [28] introduced honeywall to enable transparent network monitoring

by provisioning layer-2 bridging, which is difficult for attackers to detect. However, Gen-III

honeynets are providing coarse-grained data control, which can be solved through SDN paradigm

as proposed by [29]. In such a paper, authors proposed an SDN architecture for hybrid honeypot

systems that uses a transparent TCP connection handover mechanism to redirect traffic between

honeypots, providing traffic filtering capabilities based on alerts generated by Snort intrusion

detection system (IDS). In a similar way to our proposal, they react against the attack and divert

traffic using SDN, but they do not make use of NFV and their honeynets are not intended to

virtualize IoT networks.

Table I shows a comparison of the analyzed solutions focused on the level of interaction,

the target (honeypot or honeynet), whether the solution is related to IoT, whether it follows

a policy-based, SDN-based or NFV-based approach, whether it provides dynamic deployment,

and if the solution has been properly implemented and validated. As it can be seen, there were

not yet available a solution like the proposed herein, able to deploy dynamically IoT specific

honeynets, with a high-level of interaction, though SDN, NFV and security policies, which in

addition, has been properly validated.

7

Solution Int. level Target IoT Policy-b SDN-b NFV-b Dyn. dep. Impl./Val.

Hecker et. al [19] Low Honeynet NO NO NO NO NO YES

HoneyIo4 [20] Low Honeypot YES NO NO NO NO YES

Krishnaprasa [21] High/Low Honeypot YES NO NO NO NO YES

HoneyMix [24] High/Low Honeynet NO NO YES NO NO NO

Guarnizo et. al [22] High Honeypot YES NO NO NO NO YES

IoTPot [23] High/Low Honeypot YES NO NO NO NO YES

Provos et.al [25] Low Honeynet NO NO NO NO NO YES

Memari et.al [26] High/Low Honeynet NO NO NO NO NO YES

Fan et. al [27] High/Low Honeynet NO NO NO NO NO YES

Fahim H. et al [28] Low Honeynet NO NO NO NO NO YES

Proposed model High Honeynet YES YES YES YES YES YES

TABLE I: Honeynet SOTA Comparison

III. SECURITY FRAMEWORK OVERVIEW

A. Architecture overview

The envisioned security framework aims at exploiting the features of SDN/NFV-based security

enablers to ensure self-protection, self-healing, and self-repair capabilities in IoT systems, com-

plementing conventional security approaches. To this aim, security policies are defined according

to different level of abstraction, to ensure higher flexibility and manage security control over

heterogeneous networks. The required security actions can be enforced in different kinds of

physical and virtual appliances, including both IoT networks and softwarized networks.

The proposed architecture includes three main planes, as shown in Figure 1.

1) User Plane: The administrator plane provides interfaces and tools allowing administrators

to specify the desired security policy definitions. Its policy editor provides an intuitive and

user-friendly tool to configure security policies in a high-level security language, governing the

configuration of the system and network, such as authentication, authorization, filtering, channel

protection, and forwarding.

2) Security Orchestration plane: The Security Orchestration plane enforces policy-based

security mechanisms and provides run-time reconfiguration and adaptation of security enablers,

thereby providing the framework with intelligent and dynamic behavior. It is an innovative layer

of our architecture that provides dynamic reconfiguration and adaptation in case of deviation

from the expected behaviour.

8

VNF Domain

Virtualization layer

Infrastructure Layer

IoT Controller

IoT Network

Virtual IoT HoneyNet

Monitoring
Module

Reaction Module
Security

Orchestrator

Security Enforcement Plane

Security Orchestration Plane
Policy Interpreter

HoneyNet
Translator

SDN Controller

System Model

User Plane Policy Editor

NFV
Orchestrator

VNF Manager

VIM

NFV MANO

Control and Management Domain

(1) Define Security Policies

(2) Policy Refinement

(3) Policy Enforcement
(deploy IDS as VNF)

Virtual IDS

(4) vIDS reports bot
suspicious

(5) Attack confirmed IODEF
(6) Countermeasure, enforce

virtual IoTHoneyNet

(3.1) Deploy vIDS

(10) Deploy vIoT-HoneyNet

Conpromised IoT
device (bot)

(8) Translate IoT Netwok
System Model

(9)Configure the VNF Virtual
IoT HoneyNetvIoTHoneyNet

Manager

(3.1) Choose proper vIDS

(7) Choose proper
vIoTHoneyNet

(9.1) Select IoT bot image

(11) Deploy a virtual IoT-
Controller as VNF

(12) Redirect traffic towards
vIoTHoneyNet

(14) Restart Flash IoT motes

(13) Drop Malicious traffic

Security
Enablers
Provider

Security VNFs Manager
(+HoneyNets catalog)

Fig. 1: High level overview architecture

The Policy Interpreter module plays a key role in the refinement of security policies. The

high-level policies are first refined into medium-level security policy language, which allows

to specify workflows related to security procedures in a technology-agnostic way. Then, these

policies are translated into specific low-level configurations according to the selected enablers.

The policy refinements process are further detailed in Section IV-C.

The Security Enablers Provider identifies the available security enablers according to the

required capabilities and their relevant resource requirements. It also manages the security enabler

plugins which implements the translation to low-level configurations.

The Monitoring component collects security-focused real-time information related to the sys-

tem behavior from physical/virtual appliances. Its main objective is to provide alerts for the

reaction module in case something is misbehaving. Security probes such as Intrusion Detection

Systems (IDS) as well as flow and resource monitoring probes are deployed into the SDN, NFV

and IoT infrastructure domains to support the monitoring services.

9

The Reaction component is in charge of providing appropriate countermeasures, e.g., by

selecting policies stored in the relevant repository and by requiring reconfiguration of the security

enablers to cope with the detected threat.

The Security Orchestrator supervises the orchestration of the security enablers to be deployed

into the Security Enforcement Plane according to the policy requirements. In addition, at run-

time, it analyses the reaction outcomes and orchestrates the corresponding countermeasures.

In this way, the overall framework aims to achieve self-healing and resilience capabilities, by

constantly ensuring the satisfaction of the security requirements defined in the end-user policies.

3) Security Enforcement Plane: The security enforcement plane is divided in different do-

mains. The Control and Management domain supervises the usage of resources and run-time

operations of security enablers deployed over software-based and IoT networks. A set of dis-

tributed SDN controllers takes charge of communicating with the SDN-enabled network elements

to manage connectivity in the underneath virtual and physical infrastructure. NFV ETSI MANO-

compliant modules provide support for the secure placement and management of virtual security

functions over the virtualized infrastructure. As the envisioned framework aims to cover legacy

IoT scenarios, different IoT controllers can be used to manage IoT devices as well as low power

and lossy networks (LoWPANs). These IoT controllers are usually deployed at the network edge

(e.g., gateways) to enforce security functions in heterogeneous IoT domains.

The Infrastructure and Virtualization domain comprises all the physical machines capable of

providing computing, storage, and networking capabilities, as well as the virtualization tech-

nologies, to provide an Infrastructures as a Service (IaaS) layer. This domain also includes the

network elements responsible for traffic forwarding, following the SDN controller rules, and a

distributed set of security probes for data collection to support the monitoring services.

VNF domain accounts for the VNFs deployed over the virtualization infrastructure to enforce

security within network services. Specific mechanisms will be developed to verify the trustworthi-

ness of VNFs and to continuously monitor their key parameters, as well as specific attentions will

be addressed to the provisioning of advanced security VNFs (such as virtual firewall, IDS/IPS,

channel protection, etc.), capable to provide the defense mechanisms and threat countermeasures

requested by security policies (e.g., the virtual IoT honeynet (vIoTHoneynet) Manager in charge

of controlling the vIoTHoneynets, will be deployed as VNF).

IoT domain comprises the IoT devices to be controlled. This includes the security enablers, ac-

tuators or software agents needed to enforce the security directives coming from the orchestration

10

plane and managed at the enforcement plane by the IoT Controller. For instance, a special kind

of local security agent can be deployed in IoT devices to protect the communications between

two devices.

IV. POLICY-BASED DEPLOYMENT OF IOT HONEYNETS BASED ON SDN-NFV

A. Virtual IoT honeynets

Our proposal simulates a real IoT sensors’ network to which the attacker is redirected to be

distracted and investigated, countering the damage of his attack. Unlike traditional solutions,

in our proposal, honeynets can be deployed not only pro-actively, but also reactively, as a

countermeasure to mitigate cyber-attacks, according to the reaction provided by reaction module.

Besides, connectivity and data control in the honeynet is managed centralized through SDN. The

SDN controller is in charge of providing traffic filtering and forwarding, as well as a redirection

mechanism to divert and transfer the traffic connections from the real IoT network to the virtual

IoT honeynet, according to the necessities of intrusion investigations.

The honeynets definition in terms of network and service topologies evolve dynamically

according to the context and the actual IoT physical deployment. To this aim, the system model

is kept up to date, fed through monitoring services by probe modules such as IoT crawlers, IDS,

FlowMon, notifications, etc., in charge of generating automatically the description of the honeynet

by scanning the target production network, whereby obtaining the necessary system and network

data such as, IP address, operating system, services and open ports. Once the information has

been properly gathered, honeynets are modeled using an extended version of the Technology

Independent Honeynet Description Language (TIHDL) [30] which, in turn, inherits from the

Common Information Model (CIM) [31]. Our honeynet description model improves TIHDL

by including additional concepts needed for modeling IoT virtual honeynets, such as, physical

location of the devices, resources provided by the IoT devices, and so on, as it is defined in

section IV-B.

By using a well-defined model as the TIHDL extended one, it can be analyzed and translated

in order to transform the model information in configurations for virtual environments. For

instance, the Cooja [32] simulator for wireless sensor networks enables a holistic high interaction

simulations for the Contiki [3] operating system of IoT devices. Cooja allows simulations at

network level, operating system level, and machine code instruction set level, enabling the

deployment of virtualized HIH honeynets. When the virtual environment configuration is ready

11

to be deployed, a vIoTHoneyNet Manager is installed in an Virtual Network Function (VNF),

and it is deployed dynamically by the NFV-MANO. In this sense, the Honeynets deployment

can be performed at the proper network location to protect users against the cyber-attack.

Once the VNF has been deployed, the virtual IoT devices in the honeynet start simulation

sensor values, randomly generated in the scope of some margins, given by the standard deviation

over the mean values that the real IoT system was reporting so far. Besides, the system is

designed to offer capabilities for reconfiguring the scenario. The probe module collects in real

time updates from the real production network, adjusting the network structure of the virtual

honeynet accordingly. Furthermore, the framework is designed to continuously monitor the real

IoT devices in order to extract information to be used to provide a HIH of the IoT honeynets,

so that in case of an infected device is detected an alert and reaction is raised generating then

a dynamic up-to-date virtual IoT honeynet deployment with the updated IoT honeypots.

B. Virtual IoT honeynets data model

The context information maintained and managed by the System Model database of the Control

and Management Domain layer of the framework provides meta-model data needed to interpret

the concepts expressed in the high-level security policy language. The Context Information

encompasses the environmental information retrieved from the security enforcement plane.

The monitored information, along with the real time instantiated system model is defined in a

common language such as CIM (Common Information Model) [31] from DMTF. CIM provides

a modelling mechanism to represent concepts available in IT domains. Indeed, some operating

systems and platforms already support retrieving the current and instantiated status of the system

in CIM model, providing detailed information about the managed system. This description can

be used to retrieve information about which capabilities are provided by different system com-

ponents, as well as particular network configurations, in order to perform the policy refinement

from high-level security policy to medium-level policy language. The DTMF also provides other

standard models to represent specific components of the underlying virtual environment, such

as OVF, VMAN, CIMI and hardware infrastructure (e.g. SMASH, Redfish). For example, a

packet filtering policy should be applied by a firewall element which has network traffic filtering

capabilities, and the needed of extra information such as network IP addresses associated to a

user or a device identifier can be obtained from the instantiated system model.

12

Nonetheless, CIM does not directly provide concepts for representing honeynets. To fill this

gap, the Technology Independent Honeynet Description Language (TIHDL) [30] extends CIM

allowing to represent flexible virtual honeynet models, which can comprise a combination of

heterogeneous platforms for deploying honeynet in virtual networks and also deploy hybrid

honeynet for both, low-interaction honeypots and high-interaction honeypots. However, TIHDL

was not designed having Internet of Things in mind. Several concepts need to be added, and

some others re-designed, in order to model properly vIoTHoneynets. To this aim, our proposal

extends TIHDL to represent several concepts needed to deploy vIoTHoneynets. Fig. 2a represents

the root concepts in a Honeynet class.

C:\Users\Jorge\Documents\UMU\PROYECTOS\ANAS...\iot-honeynet.xsd 09/10/2017 11:57:43

©1998-2011 Altova GmbH http://www.altova.com Page 1Registered to pedro (pelas)

tns:ioTHoneyNetType

ioTHoneyNet

tns:nametns:

tns:nettns:

0 ..

tns:routertns:

0 ..

tns:containmentGatewaytns:

0 ..

tns:ioTHoneyPottns:

0 ..

(a) Virtual IoT HoneyNets system model

attributes

attributes

attributes

(b) Virtual IoT HoneyNets system model. IoT HoneyPot class

Fig. 2: IoT HoneyNets system data model schema

Every IoTHoneyNet is comprised of several Nets, Routers, Honeypots and ContainmentGat-

ways. The ContainmentGatway class aims to represent honeywalls and their interfaces. Notice

that, although it has omitted in the model for the sake of simplicity, the classes inherit from al-

13

ready existing classes in CIM. For instance, Router and HoneyPot extends from ComputerSystem,

and Interface inherits from NetworkPort.

The IoTHoneyPot class is represented in Fig 2b. A honeypot in IoT needs special attributes that

are not needed in traditional honeypots. For instance, IoT honeypots can be placed in wireless

devices which are deployed in a particular location. To represent this notion, the IoTHoneyPot

class features the attribute Location. Besides, an IoT device usually is endowed with several

supplied sensors and resources (e.g. temperature). In addition, the particular model of the IoT

device (e.g. Sky mote) is also important to be able to instantiate highly-interactive virtual

honeypots.

attributes

attributes

Fig. 3: Virtual IoT HoneyNets system model. Router class

The rest of the classes related to the IoTHoneyPot encompasses: Interfaces (Mac, IP, net), the

InteractionLevel (low or high-interactive honeypot), OperatingSystem (e.g. Contiki) and Software

deployed in the honeynet (e.g., Erbium).

Finally, the IoTRouterType is represented in the diagram of Fig. 3. IoT networks can be

comprised of multi-hop wireless networks in which the IoT devices can act as routers to deliver

the packet to the next hop. As in the IoTHoneyPot class, the routers also need to represent

concepts such as model, location and resource. Besides, the Router class holds the routing table

14

with the set of entries (destination-gateway) needed to represent accurately, in the vIoTHoneyNet,

the same network topology than in the real physical IoT network. Moreover, the Router class

is associated to a particular software of routing protocol (e.g., RPL). Modeling these concepts

will allow to configure the vIoTHoneyNet exactly as it is the the real IoT deployment.

C. Policy-based security management in SDN/NFV-enabled networks

IoT deployments are comprised of disparate kind of devices which might differ a lot in the

available resources, implemented protocols, or connectivity technology employed. Besides, some

domains are prone to receive more attacks than others and the level of criticality varies among

deployments, thereby changing the economic or strategic interest from attackers. Consequently,

different security requirements might apply to different IoT deployments. The security refinement

process defined herein is based upon a policy based strategy for the enforcement and management

of security requirements over an IoT platform providing interoperability and avoiding vendor

lock-in. Security policies are a flexible way to tailor the security requirements needed by an IoT

platform to the specific domain where the IoT platform is deployed. Them also ease the security

management activities required to control the fulfillment of the claims included in the policy,

allowing to set up monitoring activities, measurements, thresholds, alerts, reaction activities, etc.

In this way, security policy operations are divided into three main tasks. Namely, the process

that parses the high level policy into a machine readable format (policy refinement), the trans-

formation of that policy format into low level configuration rules (policy translation) and the

process for configuring the system (policy enforcement). The sequence diagram of Fig. 4 shows

the main workflow for a proactive policy definition and its refinement from High-level Security

Policy Language (HSPL) to Medium-level Security Policy Language (MSPL) based on [33], as

well as the policy translation process from MSPL to low-level configurations.

First, the security administrator defines the security policy in HSPL (Fig. 4-step 1). Then, the

Policy Interpreter receives a policy enforcement request, starting the refinement process by the

identification of the capabilities (Fig. 4-step 3), understanding a capability as a main purpose of

the policy (e.g., filtering capability will be identified when a security policy is defined in order

to drop traffic).

Once the Policy Interpreter has identified the capabilities, it performs a request to the Security

Enabler Provider (Fig. 4-step 4), with the aim to get a list of Security Enablers capable to

enforce the mentioned capabilities. In this context, a Security Enabler corresponds to a piece

15

Policy
Editor
Tool

Security
Orchestrator System

Model

Policy
Interpreter

Security
Enablers
Provider

Security
Enablers

Repository

Security
Policy

Repository

1 defineHSPL()

High To Medium Level Policy Refinement

2 enforce(HSPL)

3 identifyCapabilities()

4
identifyEnablers
(List<Capability>)

5
getEnablers
(List<capability>)

6 List<Enabler>

7 List<Enabler>

8 nonEnforzableAnalysis()

9
early non-enforzable
analysis report

10 getSysModel()

11 sysModel

12
generateMSPL/s
(HSPL,sysModel)

13
complete non-enforzable
analysis report>

14 uploadMSPL(List<MSPL,List<Enabler>>)

15 enforceMSPL(List<MSPL,List<Enabler>>)

16 getSysModel()

17 sysModel

18
selectBestEnablers
(List<MSPL,List<Enabler>>)

19
non-enforzable
analysis report

Medium to Low Level Policy Tanslation

20
translateMSPL
(List<MSPL,SelectedEnabler>)

loop [For each MSPL Policy]

21 getPlugin(enabler)

22 getPlugin(enabler)

23 enablerPlugin

24 enablerPlugin

25
executePlugin(MSPL,
enablerPlugin)

26
populate
Enabler
Configuration(enablerConf)

27
enforce
Configuration(List
<enablerConf>)

Fig. 4: Policy Refinement and Policy Translation processes

16

of software or hardware capable to implement some specific security properties (e.g., filtering,

forwarding...). The Security Enabler Provider then returns the aforementioned list of Security

Enablers for each capability. Afterwards, the Policy Interpreter verifies whether each security

policy could be enforced using at least one of the Security Enabler received (Fig. 4-step 8).

If the security policy could not be enforced, the Policy Interpreter returns a non-enforzable

analysis to the user, indicating the issue (Fig. 4-step 9). Otherwise, the Policy Interpreter retrieves

system model information (e.g., technical information of an IoT device) and it performs the

policy refinement taking into account the capability of the HSPL policy as well as the specific

system model information in order to generate one or several (e.g., bi-directional behavior) MSPL

policies (Fig. 4-step 12). Like in the previous case, if there is some issue during the refinement,

the user is notified with a non-enforzable analysis but, in other case, the MSPL policy and the

list of available security enablers are uploaded to the Security Policy Repository and they are

also sent to the Security Orchestrator in order to proceed with the best security enabler selection

for the medium-level security policy translation process (Fig. 4-steps 14,15).

When the Security Orchestrator receives the MSPL policy and the list of security enablers,

it retrieves information about the underlying technologies in order to select the best security

enabler for the policy enforcement by using the current context and system information to

make the decision (Fig. 4-steps 16,17,18). Then, the Security Orchestrator requests the MSPL

translations to the Policy Interpreter for each pair of MSPL and selected security enabler. The

Policy Interpreter retrieves from the Security Enabler Provider the plugin which implements

the MSPL translation for the selected security enabler, and executes it, generating the expected

low-level configurations (Fig. 4-steps 21-27), which are sent to the Security Orchestrator (Fig.

4-step 23) who proceeds with the enforcement process.

Fig. 5 shows the policy enforcement process. The Security Orchestrator receives the enablers

configuration and it triggers the enforcement process through the SDN Controller, the IoT

Controller, the NFV MANO (Fig. 5-steps 1,2,3) or even by a direct communication with the

security enabler (e.g., legacy physical router), depending on the requirements of the security

policy. On the one hand, if a specific VNF is required, and it is not already deployed, the

NFV-MANO creates, configures and deploys a new one (Fig. 5-steps 6,7). Otherwise the NFV-

MANO just enforce the received configuration over the VNF. Besides, if the security policy

is SDN related, the SDN Controller is in charge of enforcing the policy over the managed

SDN network (Fig. 5-steps 4,8). Finally, if the security policy is IoT related, the IoT Controller

17

Security Orchestration Plane Security Enforcement Plane IoT/CPS Systems Plane

Security
Orchestrator

IoT
Controller

SDN
Controller NFV-MANO

VNF
Domain

Infrastructure
Domain

IoT
Device

1 enforce(enablerConf)

2 enforce(enablerConf)

3 enforce(enablerConf)

4 applyConfiguration()

5 applyConfiguration()

alt [VNF does not exist]

6 <<create>>

7 applyConfiguration()

8 applyConfiguration()

Fig. 5: Policy Enforcementj process

enforces the IoT configurations over the managed IoT devices by using specific IoT constrained

protocols (Fig. 5-steps 5).

D. Attack detection and virtual IoT Honeynet dynamic configuration and deployment

By following the previous policy-based approach it is possible to define a set of pro-active

security policies in order to configure and deploy monitoring agents which feeds the reaction

part of the framework. Thus, the monitored data is filtered, processed and analyzed, issuing

verdicts about anomalies occurring in the monitored platform (potential threats or ongoing

attacks). The identified events are notified to the reaction module of the framework which creates

countermeasures (i.e. a set of security policies) reacting to threats or attacks, and triggering the

countermeasure’s enforcement. Besides, the security reaction process is also able to notify the

administrator, who might provide feedback and trigger critical countermeasures that require

explicit consent or to override the security policy.

When the reaction countermeasure is performed automatically, the reaction module generates

and provides a set of countermeasures as new security policies to the Security Orchestrator,

which acts similar to when it receives the MSPLs from the Policy Interpreter in the pro-

active scenario. Fig. 6 shows the main workflow regarding a botnet DDoS attack detection,

instantiated for an IoT honeynet deployment countermeasure. First, a previously deployed IDS

VNF detects the signature of DDoS attack of the botnet (e.g., Mirai) (Fig. 6-steps 1,2). The

infected zombie (bot) in the IoT domain can be detected based on flow-based metrics, which are

sent to ANASTACIA monitoring module for further analysis. The Monitoring module analyzes

18

the thread and communicates the alert (e.g. IODEF) to the reaction module (Fig. 6-step 3,4),

which is in charge of making the decision regarding the particular kind of countermeasure to be

taken. In this case, the reaction module indicates that IoTHoneynet and networking operations

that must be enforced, so it requests the enforcement of the countermeasures to the Security

Orchestrator (Fig. 6-step 6).

VNF
IDS Monitoring Reaction

Security
Orchestrator

NFV
MANO

VNF
vIoTHoneyNet

manager
SDN

Controller

attack detection phase

1
matchAttack
(DDos)

2
attackDetection
(DDos)

3
analyzeThread
(DDos)

4
alert
(IODEF
message)

attack reaction phase

5

deliberate
Countermeasure
(IODEF
message)

6

reaction(
AttackInfo,
Countermeasures
<IoTHoneynet,
Filtering,
Forwarding>)

7
orchestration
Algorithm()

8

deployVNF
(selectedEnabler,
enablerConf,
firmwares)

alt [VNF does not exist]

9 <<create>>

10

deploy
(enabler
Conf,
firmwares)

11 success

12 enforce(enablerConf)

Fig. 6: IoTHoneyNet deployment process

The Security Orchestrator receives the attack information as well as countermeasures (which

could be security policies pending to be fulfilled) and it executes the orchestrator algorithm (Fig.

6-step 7). Algorithm 1 shows the pseudo-code of orchestration algorithm.

19

Data: AI = attackInfo, C = {countermeasuresList}

Result: EnforcedC ′ ⊂ C

1 for c in C do

2 if c has unsatisfied dependencies then

3 queue(c);

4 continue;

5 end

6 sm← getSystemModel(c);

7 if c ⊂ {IoTContermeasures} then

8 ioTsm← getIoTSystemModel(c);

9 sm← sm ∪ ioTsm;

10 end

11 mspl← fillMSPL(c, sm);

12 candidates← getEnablerCandidates(mspl);

13 se← selectEnabler(mspl, candidates, sm);

14 conf ← translate(mspl, se);

15 if mspl ⊂ {HoneynetMSPLs} then

16 cf ← genCustomFirmware(conf,AI);

17 end

18 enforce(conf, se, cf) end

19

Algorithm 1: Security Orchestrator Algorithm for countermeasures enforce-

ment

The algorithm iterates over the countermeasures verifying whether there is any unsatisfied

dependency. If so, the countermeasure is queued until the dependency is solved (filtering and

forwarding will depend on the vIoTHoneynet deployment). Otherwise, the algorithm retrieves

system model information of the underlying technologies related to the elements involved in the

countermeasure. If the countermeasure is related with IoT, the algorithm also includes in the

system model the IoT infrastructure information available in the IoT Controller. The information

of the infrastructure and the countermeasure are then used in order to fulfill the MSPL policy.

The algorithm then retrieves a list of security enabler candidates capable of enforcing the MSPL

policy, and it selects the best candidate by considering the current status of the infrastructure

(system model), the candidates and the security policy requirements.

Once the best security enabler is selected, the algorithm obtains the enabler configuration by

20

a MSPL policy translation. If the security policy is IoT Honeynet related, a custom firmware

generation could be required in order to emulate not only the current infrastructure, even the

specific attack behaviour (e.g., emulate a Mirai botnet). Finally, the enabler configuration is

enforced through the selected enabler (Fig. 6-steps 8,12). For the vIoTHoneynet, the NFV-

MANO verifies if there is already deployed a suitable VNF which implements the vIoTHoneynet

manager. If so, the vIoTHoneynet configuration is sent to the vIoTHoneynet manager who starts

the vIoTHoneynet according on the received parameters. Otherwise, the process is barely the

same, but the NFV-MANO first creates a suitable VNF instance for the vIoTHoneynet manager.

When the vIoTHoneynet is running, the Security Orchestrator receives a notification from the

vIoTHoneynet agent, which verifies whether the event satisfies any queued countermeasure. If

so, it process and enforces the filtering and forwarding policies through the SDN controller in

a transparent way for the attacker. On the one hand, the traffic from the real IoT domain to the

attacker as well as the traffic from the real IoT domain which is generating the DDoS attack are

filtered. On the other hand, the traffic from the attacker to the real IoT infrastructure is redirected

to the vIoTHoneynet and the simulated DDoS generated by the vIoTHoneynet is also filtered.

In this way the attacker believes he is still controlling the affected bot device, but the attack is

unsuccessful and the process allows security administrators take advantage of the situation (e.g.,

learning the attacker methodology).

V. IMPLEMENTATION

Figure 7 shows the deployment that has been instantiated, based on the developments carried

out in the scope of this research in order to perform the testing of the proposed architecture.

The monitoring module is instantiated using the XL-SIEM tool, which is a Security Information

and Event Manager able to detect issues along the architecture by monitoring network resources,

provided by Atos. XL-SIEM is able to infer cyber-atacks by analyzing the detected anomalies.

Those issues are notified to the Reaction module, providing the information in the Incident Object

Description Exchange Format IODEF [34] standard. The Reaction module analyzes the threats

and it generates a reaction which is sent to the Security Orchestrator in an adequate format,

able to represent the coordination and execution of command and control for cyber-defense

components, i.e., the Open Command and Control (OpenC2) [35] language. Once the Security

Orchestrator knows the reaction, it performs the requested modifications over the architecture

by using security policies. To provide policy definition, refinement, and translation features, a

21

Policy Editor Tool and a Policy Interpreter have been implemented in Python, based on the

outcomes of the SECURED project policy models [33].

VNF Domain

Virtualization layer

Infrastructure Layer

IoT Controller

IoT Network

Virtual IoT HoneyNet

Monitoring
Module

Reaction Module
Security

Orchestrator

Security Enforcement Plane

Security Orchestration Plane
Policy Interpreter

HoneyNet
Translator

SDN Controller

System Model

User Plane Policy Editor

NFV
Orchestrator

VNF Manager

VIM

NFV MANO

Control and Management Domain

Virtual IDS

vIoTHoneyNet
Manager

Contiki motes

Cooja WSN emulator

 Snort

ONOS

CoAP-DTLs over
6LowPAN

OpenFlow

Python service

OpenSourceManoPython Service

Python Service
XL-SIEM

IODEF

HSPL/MSPL languages

OpenStack

OpenC2

Extended TIHDL
language

Contiki
emulated

motes

Security
Enablers
Provider

Python service

Fig. 7: Architecture instantiation and implementation

Specifically, different plugins have been implemented for the policy translation from MSPL to

low-level configurations. Namely, a plugin translates MSPL IoT HoneyNet policies into Cooja

emulator configurations which can be applied by the Northbound API of our vIoTHoneyNet

manager. Listing 1 provides an MSPL policy example which embeds the IoT system model.

The virtualIoTHoneyNetAction specifies the action to be performed over the honeynet (other

actions such as reconfigure, stop or restart the environment could be specified), whereas the

IoTHoneyNet model describes general information regarding the network and the honeynet

itself, like identifications or descriptions. More concrete information is provided about the main

elements such as routers and IoTHoneyPots, like their interaction levels (LOW, HIGH), defined

as the degree of replication between the real and virtual environments, the operating system, the

installed software and its version, the available resources of the IoT honeypot (e.g., temperature

sensor, humidity sensor...) and even its physical location expressed in Cartesian coordinates.

22

<c o n f i g u r a t i o n R u l e>

<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ VIoTHoneyNetAction ’ >

<VIoTHoneyNetActionType>DEPLOY</ VIoTHoneyNetActionType>

<ioTHoneyNet >

<name>REST wi th RPL r o u t e r</ name>

<n e t i d =” 1 ”><name>n e t</ name></ n e t>

<r o u t e r i d =” 1 ”>

<name>Wismote RPL Root</ name>

<i n t e r a c t i o n l e v e l>LOW

</ i n t e r a c t i o n l e v e l>

<i f i d =” 1 ” n e t =” s t r 1 2 3 4 ”>

<name>i 1</ name>

<mac addr>ROUTER MAC</ mac addr>

<i p>ROUTER IP</ i p>

</ i f>

<o p e r a t i n g S y s t e m>

<name>c o n t i k i</ name><v e r s i o n>2 . 7</ v e r s i o n>

</ o p e r a t i n g S y s t e m>

<s o f t w a r e i d =” 1 ”>

<name>RPL</ name><v e r s i o n>3 . 1 4</ v e r s i o n>

</ s o f t w a r e>

<model>Wismote</ model>

<l o c a t i o n><x>33 .2601</ x><y>30 .6432</ y></ l o c a t i o n>

<r e s o u r c e>TEMPERATURE</ r e s o u r c e>

</ r o u t e r>

<ioTHoneyPot i d =” 2 ”>

<name>Erbium S e r v e r</ name>

<i n t e r a c t i o n l e v e l>LOW</ i n t e r a c t i o n l e v e l>

<i f> . . .</ i f>

<o p e r a t i n g S y s t e m>

<name>c o n t i k i</ name>

</ o p e r a t i n g S y s t e m>

<s o f t w a r e i d =” 1 ”>

<name>Erbium S e r v e r</ name><v e r s i o n>3 .14159</ v e r s i o n>

</ s o f t w a r e>

<model>Sky</ model>

<l o c a t i o n> . . .</ l o c a t i o n>

<r e s o u r c e>Tempera tu r e</ r e s o u r c e>

</ ioTHoneyPot>

. . .

</ ioTHoneyNet>

</ c o n f i g u r a t i o n R u l e A c t i o n>

</ c o n f i g u r a t i o n R u l e>

Listing 1: IoT HoneyNet Model Example

<s imconf>

<mote type>

se . s i c s . c o o j a . mspmote . WismoteMoteType

< i d e n t i f i e r>1</ i d e n t i f i e r>

<d e s c r i p t i o n>Wismote RPL Root</ d e s c r i p t i o n>

<s o u r c e>borde r−r o u t e r . c</ s o u r c e>

<commands>make borde r−r o u t e r . wismote

TARGET=wismote</ commands>

<f i r m w a r e>borde r−r o u t e r . wismote</ f i r m w a r e>

<m o t e i n t e r f a c e>P o s i t i o n</ m o t e i n t e r f a c e>

<m o t e i n t e r f a c e>IPAddre s s</ m o t e i n t e r f a c e>

</ mo te type>

<mote type>

se . s i c s . c o o j a . mspmote . WismoteMoteType

< i d e n t i f i e r>2</ i d e n t i f i e r>

<d e s c r i p t i o n>Erbium S e r v e r</ d e s c r i p t i o n>

<s o u r c e>coap−s e r v e r . c</ s o u r c e>

<commands>make coap−s e r v e r . wismote

TARGET=wismote</ commands>

<f i r m w a r e>coap−s e r v e r . wismote</ f i r m w a r e>

<m o t e i n t e r f a c e>P o s i t i o n</ m o t e i n t e r f a c e>

<m o t e i n t e r f a c e>IPAddre s s</ m o t e i n t e r f a c e>

<m o t e i n t e r f a c e>TEMPERATURE</ m o t e i n t e r f a c e>

</ mo te type>

<mote>

<b r e a k p o i n t s></ b r e a k p o i n t s>

<i n t e r f a c e c o n f i g>

org . c o n t i k i o s . c o o j a . i n t e r f a c e s . P o s i t i o n

<x>33 .2601</ x><y>30 .6432</ y><z>0 . 0</ z>

</ i n t e r f a c e c o n f i g>

<i n t e r f a c e c o n f i g>

org . c o n t i k i o s . c o o j a . mspmote .

i n t e r f a c e s . MspMoteID

<i d>1</ i d>

</ i n t e r f a c e c o n f i g>

<m o t e t y p e i d e n t i f i e r>1</ m o t e t y p e i d e n t i f i e r>

</ mote>

. . .

</ s imconf>

Listing 2: Corresponding Cooja CSC model

Listing 1 shows example of MSPL and its corresponding translation into Cooja Simulation

Model configurations (CSC model) as shown in Listing 2. As it can be observed, it allows

specifying the type of IoT device (motetype), even including the source code to be compiled, or

directly the IoT firmware, as well as the platform and available resources.

Besides the vIoTHoneynet configuration, additional policy enforcements must be accomplished

like filtering and forwarding, in order to set-up the network to accommodate the new virtual

appliance, and redirecting the attacker to the vIoTHoneyNet. In this sense, it has been developed

23

a plugin to translate MSPL filtering and forwarding policies to specific SDN ONOS Controller

Northbound API configurations.

<c o n f i g u r a t i o n R u l e>

<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ F i l t e r i n g A c t i o n ’>

<F i l t e r i n g A c t i o n T y p e>DENY</ F i l t e r i n g A c t i o n T y p e>

</ c o n f i g u r a t i o n R u l e A c t i o n>

<c o n f i g u r a t i o n C o n d i t i o n x s i : t y p e = ’ F i l t e r i n g C o n f C o n d i t i o n ’>

<p a c k e t F i l t e r C o n d i t i o n>

<SourceAddre s s>a a a a : : / 6 4</ Sou rceAddre s s>

<D e s t i n a t i o n A d d r e s s>c c c c : 2 /128<D e s t i n a t i o n A d d r e s s>

<I n t e r f a c e>2</ I n t e r f a c e>

. . .

<e x t e r n a l D a t a x s i : t y p e = ’ P r i o r i t y ’><v a l u e>60000</ v a l u e>

. . .

</ c o n f i g u r a t i o n R u l e>

<c o n f i g u r a t i o n R u l e>

<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ T r a f f i c D i v e r t A c t i o n ’>

<TD iv e r t Ac t i o nT ype>FORWARD</ T Di ve r tA c t i on Typ e>

<p a c k e t D i v e r t A c t i o n>

<p a c k e t F i l t e r C o n d i t i o n>

<I n t e r f a c e>3</ I n t e r f a c e>

. . .

</ c o n f i g u r a t i o n R u l e A c t i o n>

<c o n f i g u r a t i o n C o n d i t i o n x s i : t y p e = ’ T D i v e r t C o n f C o n d i t i o n ’>

<p a c k e t F i l t e r C o n d i t i o n>

<SourceAddre s s>c c c c : : 2 /128</ Sou rceAddre s s>

<D e s t i n a t i o n A d d r e s s>a a a a : : / 6 4</ D e s t i n a t i o n A d d r e s s>

<I n t e r f a c e>1</ I n t e r f a c e>

. . .

<e x t e r n a l D a t a x s i : t y p e = ’ P r i o r i t y ’><v a l u e>60000</ v a l u e>

. . .

</ c o n f i g u r a t i o n R u l e>

Listing 3: MSPL Filtering Example

[{ ” p r i o r i t y ” : 60000 ,

” t r e a t m e n t ” : {

” i n s t r u c t i o n s ” : [{ ” t y p e ” : ”NOACTION”}]} ,

” s e l e c t o r ” : {

” c r i t e r i a ” : [

{” t y p e ” : ” IPV6 SRC” , ” i p ” : ” a a a a : : / 6 4 ”} ,

{” t y p e ” : ” IPV6 DST” , ” i p ” : ” c c c c : : 2 /128 ”} ,

{” t y p e ” : ”IN PORT” , ” p o r t ” : ” 2 ”}]}} ,

{” p r i o r i t y ” : 60000 ,

” t r e a t m e n t ” : {

” i n s t r u c t i o n s ” : [{ ” t y p e ” : ”OUTPUT” , ” p o r t ” : ” 3 ”}]}

” s e l e c t o r ” : {

” c r i t e r i a ” : [

{” t y p e ” : ” IPV6 SRC” , ” i p ” : ” c c c c : : 2 /128 ”} ,

{” t y p e ” : ” IPV6 DST” , ” i p ” : ” a a a a : : / 6 4 ”} ,

{” t y p e ” : ”IN PORT” , ” p o r t ” : ” 1 ”}]}}]

Listing 4: ONOS Northbound Filtering

Configuration Example

Listing 3 shows an example of filtering and forwarding security policies. The filtering pol-

icy indicates the traffic that goes from the real IoT deployment (AAAA::/64) to the attacker

(CCCC::2/128) must be dropped. On the other hand, the forwarding policy indicates the traffic

coming from the attacker to the real IoT deployment must be redirected to the interface where

the vIoTHoneynet has been deployed. Listing 4 shows the configuration obtained after the policy

translation process for filtering and forwarding policies using ONOS as SDN security enabler.

Specifically, it provides the filtering and forwarding rules to be applied through the ONOS

Northbound API.

Regarding the orchestration, it has been developed a Python application which allows to

enforce the aforementioned security policies by applying the configuration or tasks to the dif-

ferent policy enforcement points. In the case of the vIoTHoneyNet security policy, the Security

Orchestrator implementation is also in charge of obtaining the IoT physical architecture model

24

in a extended TIHDL format from the IoT Controller, and include it in an IoTHoneynet MSPL

security policy. Once the MSPL has been generated, the Security Orchestrator gets the final

Cooja configuration through the Policy Interpreter, which executes the vIoTHoneyNet plugin in

order to translate the IoT system network modeled in our extended TIHDL language into Cooja

configuration. Cooja has been chosen, since it allows developing the IoT device functionality in

C language, customizing, compiling, loading it into the platform, and even providing the real

IoT device locations in coordinates, as well as interesting parameters such as the transmission

range, interference range and success ratio for LoWPANs.

Once the Cooja CSC model has been obtained, the Security Orchestrator selects the proper

firmwares to replicate the real IoT behavior and it requests the deployment of the vIoTHoneyNet

with the specific configuration and firmwares through the NFV-MANO. In order to deploy

on demand the vIoTHoneyNet, the our vIoTHoneyNet manager implementation provides an

API capable to receive the Cooja CSC model and the specific firmwares, in order to configure

and execute the Cooja simulation in the VNF. When the simulation has been started and the

network is ready to be reachable from outside (i.e., routing protocol algorithm has converged),

the vIoTHoneyNet manager warns the Security Orchestrator, which enforces the filtering and

traffic divert policies through ONOS SDN controller in order to redirect the traffic generated or

received for the physical architecture to the virtual one. Besides, it drops the malicious traffic

sent to the victim in order to mitigate the current attack.

VI. PERFORMANCE EVALUATION

The section aims to determine the feasibility of the deployment for the proposed virtual

IoT honeynet mechanism. The goal is to apply an IoT honeynet security policy as reaction

countermeasure to mitigate an attack in a reasonable time, deploying a virtual IoT honeynet

as much realistic as possible to the real physical IoT deployment. The performance tests have

been carried out by applying 100 times IoT Honeynet security policies over each of the two

different sections on the Smart Building floors we are using in our premises. IoT sensors are

heterogeneous in terms of sensoring capabilities and operating system version installed for each

floor.

The full time of the IoT honeynet policy deployment has been split in different times to allow

a fine-grain analysis, as is shown in figure 8. In the translation among the physical model to

the virtual one, it is measured the time taken by translator plugin to provide the Cooja CSC

25

HoneyNet Translator

Time (t)

Security Enforcement Plane

NFV Mano

Model Translation
Devices code
compilation

Loading Code in Devices Set-up Honeynet

vIoTNetManager

vIoTHoneyNet Configuration

IoT Network
Convergence

Security Policy
Enforcement

SecurityOrchestrator
Plane

Security
Enforcement

Plane

vIoTHoneyNet Deployment and Security
enforcement

Fig. 8: Testbed measured times representation

model from the IoT HoneyNet physical model (i). For the compilation (ii) and load (iii) of the

IoT devices code, it is measured the time taken to compile the code for all IoT devices and the

time required to load the compiled code into the IoT devices. In addition, it is considered the

overall time required by the simulation to be ready, i.e., all IoT devices are up and running (iv).

In case the simulation uses a routing algorithm, the IoT network convergence time measures the

time needed by the router to learn a route to all IoT devices (v). Finally, the Policy Enforcement

time measures the time taken to apply the network policy configurations in order to filter and

divert the traffic, as described in previous section (vi). The tests have been supported by a virtual

machine with 4 CPUs and 2 GB of RAM memory. This virtual machine has been hosted in an

Intel Core i7-2600 at 3.40 GHz with 8 GB of RAM memory.

Regarding the use cases, Figure 9 shows the first use case corresponding to first floor of our

building, which is comprised by 20 sky motes distributed along 30x15m, executing Contiki OS

2.7, empowered by 8 Mhz, 10KB RAM and 48KB Flash, measuring humidity, temperature, light

and CO2. One of them is a RFID sensor as door keeper, and finally, there is one more as a

router using RPL as routing algorithm, which connects all sensors to the smart build network.

On the other hand, figure 10 shows the second floor use case which is comprised by 50

wismote motes, distributed along 37.5x15m, executing contiki OS 3.1, empowered by 16 Mhz,

16KB RAM and 128KB Flash, measuring humidity, temperature, light, presence and CO2. In

this case, all doors are equipped by RFID sensors, and finally, at the same way of the previous

case, there is one more as a router using RPL as routing algorithm, which connects all sensors

to the smart build network.

Figures 11a and 11b s the time taken for each step in the vIoTHoneyNet policy deployment

process in order to virtualize up to 50 Sky and Wismote motes respectively, without taking into

26

Fig. 9: Sky 20 physical distribution

Fig. 10: Wismote 50 physical distribution

account the spatial location. In both cases all parameters increases as the number of IoT devices

scales. The translation time is similar in both cases, since the cooja models are quite similar for

the different contiki versions. On the other hand, the compilation and load times are greater in

the second case, since the contiki 3.1 operating system version is heavier, what lengthens the

final start of the simulation. In both cases, the most expensive time is the compilation time.

According to the physical scenarios proposed, in the first case (20 sky motes), the IoT honeynet

is ready in less than 15 seconds, and in the second case (50 wismote motes) it is up and running

in less than 45 seconds. Depending on the grade of the similitude needed, we can replicate not

only the IoT devices with their configurations, but also the physical network topology. Indeed, we

could generate a different topology in order to obtain some network benefits such as for instance,

27

0

5

10

15

20

25

10 20 30 40 50

Ti
m

e
(s

)

Motes quantity

Sky IoT Honeynet Startup

Model translation X10 Compilation Load Simulation start

(a) Sky Contiki 2.7 startup

0

10

20

30

40

50

10 20 30 40 50

Ti
m

e
(s

)

Motes quantity

Wismote IoT Honeynet Startup

Model translation X10 Compilation Load Simulation start

(b) Wismote Contiki 3.1 startup

Fig. 11: IoT Honeynet Startup time

improving the convergence time in case we are not using static IP assignment. Since we are

using RPL as routing protocol and the convergence time could be a handicap, the translator

plugin allows to replicate the physical environment, and specify a concrete network topology.

Fig. 12: Mesh Topology Fig. 13: Physical Topology

Figure 12 shows a vIoTHoneyNet mesh topology while figure 13 shows the IoT honeynet

virtualization by replicating the physical positions for each use case. The mote marked as 1

represents the router and each square of the grid is 10 meters large. The system is considered

converged when the router learns through RPL routing protocol at least one route for each

device in the virtual IoT honeynet, i.e., when all nodes are fully reachable from outside. Since

the topology is determinant in this process we compare the results of the physical topology

28

deployment emulation with the results of a classical mesh topology deployment emulation.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Iteration

Sky IoT Honeynet RPL Convergence

20 Mesh Topology 20 Physical Topology

(a) Sky Contiki 2.7 convergence

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Iteration

Wismote IoT Honeynet RPL Convergence

50 Mesh Topology 50 Phisical Topology

(b) Wismote Contiki 3.1 convergence

Fig. 14: IoT Honeynet RPL Convergence

Figures 14a and 14b show the convergence time for both use cases by virtualizing the physical

topology and a mesh topology. For the first floor use case, results are quite similar since the

physical topology is close to a mesh topology. The best results are near to 17 seconds, while the

worse results are close to 100 and 125 seconds respectively, being the vast majority comprised

between 20 and 40 seconds. On the other hand, in the second floor use case, since the physical

distribution is more random, we can observe the mesh topology obtains significant better results,

being the majority of the results close to 35 seconds with a maximum of 334 seconds and a

minimum of 24 seconds. It should be noted that IoT deployments devices are sleeping as much

as they can in order to save energy, thereby generating a great dispersion in the results. The

average values are close to 40 and 191 seconds, respectively.

Regarding filtering and forwarding policies enforcement, the performance evaluation accom-

plished measures the time taken since the filtering/forwarding policy enforcement has been

requested, until them have been enforced in the vSwitch. Since in the experiments the networking

policies are applied for a whole IoT subnet, the time taken by policies is independent of the

number of the IoT devices. In this regard, the translation filtering and forwarding processes are

independent of the use case, and the lightest steps in terms of time consumption.

Table II shows the performance time in the IoT honeynet policy enforcement process. For the

first use case the virtual IoT honeynet are deployed in less than 60s, while in the second use

case the average time is close to 4 minutes. These times might be improved through the use

of static IP addresses or a more detailed study of the simulator parameters for the convergence

times (out of the scope of this paper).

29

Use case Translation X10 Simulation start Convergence Filtering Forwarding Total (s)

20-mesh 2.88 13.26 36.48 0.37 0.36 53.35

20-phy 2.88 13.26 37.89 0.37 0.36 54.76

50-mesh 5.3 43.41 39.93 0.37 0.36 89.37

50-phy 5.3 43.41 191.57 0.37 0.36 241.01

TABLE II: Policy enforcement timing

0

20

40

60

80

100

120

10 20 30 40 50

C
o

n
su

m
p

ti
o

n
 (

%
)

Motes quantity

Sky IoT Honeynet Resource Consumption

CPU MEM

(a) Sky Contiki 2.7 resource consumption

0

20

40

60

80

100

120

10 20 30 40 50

C
o

n
su

m
p

ti
o

n
 (

%
)

Motes quantity

Wismote IoT Honeynet Resource Consumption

CPU MEM

(b) Wismote Contiki 3.1 resource consumption

Fig. 15: Resource usage performance

In addition, different tests were conducted to analyze the CPU and RAM memory usages of

the our vIoTHoneynet manager. Figures 15a and 15b show the resource consumption measured

for the different use cases. The CPU metrics are almost use case independent and the simulation

is using completely one CPU at a 100%, regardless of the number of devices. Finally, as it was

predictable, RAM memory grows according to the incremental number of devices, being bigger

in the second use case, since the nodes are more complex.

VII. CONCLUSIONS

This paper has exposed a novel solution to manage dynamically virtual IoT HoneyNets to

mitigate cyberattacks in SDN/NFV-enabled IoT networks. The proposal allows administrators to

deploy IoT Honeynets as a service through high level security policies over IoT infrastructures

such as Smart Buildings. The approach adopted enables to replicate the physical IoT architecture

on a virtual environment, by translating the physical architecture model to common interoperable

IoTHoneyNet data model, and in turn, translating it to a virtualized environment deployed as

VNFs. The whole process is driven by network security policies defined over the SDN controller

and NFV MANO, whereby filtering, dropping and diverting the network traffic dynamically, and

adapting the network behavior according to the new deployed vIoTHoneyNets needs.

30

The performance evaluation accomplished has demonstrated the feasibility of the proposed

solution. Results has shown the successful deployment of IoT Honeynets with full connectivity.

The deployment times behaves as expected, following a linear increasing trend as the number

of nodes grows. Besides, the proposal has demonstrated that the virtual IoT Honeynets can be

deployed on demand in a totally transparent way to the attacker, since the network behavior

modification is performed fast, once the IoT Honeynet has been deployed.

As future work, we envisage to investigate on virtual IoTHoneynet for 5G-enabled IoT devices

to reach broader and WAN scenarios. Finally, we also expect to design and implement, in the

scope of ANASTACIA cognitive approaches (e.g. based on AI), in order to counter cyber-attacks

in IoT.

ACKNOWLEDGMENTS

This work is the result of the stay (20177/EE/17) funded by ”Fundacion Seneca-Agencia de Ciencia y Tecnologa

de la Region de Murcia”, under the program ”Jimenez de la Espada de Movilidad Investigadora, Cooperacion e

Internacionalizacion”. The research has been also supported by a postdoctoral INCIBE grant within the ”Ayudas

para la Excelencia de los Equipos de Investigacin Avanzada en Ciberseguridad” Program, with code INCIBEI-2015-

27363, as well as by the H2020 EU project ANASTACIA project, Grant Agreement N 731558.

REFERENCES

[1] Y. Gao, Y. Peng, F. Xie, W. Zhao, D. Wang, X. Han, T. Lu, and Z. Li, “Analysis of security threats and vulnerability

for cyber-physical systems,” in Proceedings of 2013 3rd International Conference on Computer Science and Network

Technology, Oct 2013, pp. 50–55.

[2] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the internet of things: A survey of existing protocols and open

research issues,” IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp. 1294–1312, thirdquarter 2015.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating system for tiny networked sensors,”

in 29th Annual IEEE International Conference on Local Computer Networks, Nov 2004, pp. 455–462.

[4] D. R. J. V. A. S. S. B. A. Z. Alejandro Molina Zarca, Jorge Bernal Bernabe and P. Gouvas, “Security by design architecture

for softwarized and virtualized iot scenarios,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[5] J. P. Santos, R. Alheiro, L. Andrade, V. Caraguay, Á. Leonardo, L. I. Barona López, M. A. Sotelo Monge, L. J.

Garcia Villalba, W. Jiang, H. Schotten et al., “Selfnet framework self-healing capabilities for 5g mobile networks,”

Transactions on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1225–1232, 2016.

[6] S. Ziegler, A. Skarmeta, J. Bernal, E. Kim, and S. Bianchi, “Anastacia: Advanced networked agents for security and trust

assessment in cps iot architectures,” in 2017 Global Internet of Things Summit (GIoTS), June 2017, pp. 1–6.

[7] V. Varadharajan and U. Tupakula, “Security as a service model for cloud environment,” IEEE Transactions on Network

and Service Management, vol. 11, no. 1, pp. 60–75, 2014.

31

[8] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion (unfixable) flaws on a billion devices: Rethinking

network security for the internet-of-things,” in Proceedings of the 14th ACM Workshop on Hot Topics in Networks. ACM,

2015, p. 5.

[9] A. Furfaro, A. Garro, and A. Tundis, “Towards security as a service (secaas): On the modeling of security services for

cloud computing,” in Security Technology (ICCST), 2014 International Carnahan Conference on. IEEE, 2014, pp. 1–6.

[10] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security through software defined networking (sdn),” in 2016

25th International Conference on Computer Communication and Networks (ICCCN), Aug 2016, pp. 1–9.

[11] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling security functions with sdn: A feasibility study,”

Computer Networks, vol. 85, pp. 19 – 35, 2015.

[12] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (sdn) and distributed denial of service (ddos) attacks in

cloud computing environments: A survey, some research issues, and challenges,” IEEE Communications Surveys Tutorials,

vol. 18, no. 1, pp. 602–622, Firstquarter 2016.

[13] Y. Choi, “Implementation of content-oriented networking architecture (cona): a focus on ddos countermeasure,” in

Proceedings of European NetFPGA developers workshop, 2010.

[14] T. Xu, D. Gao, P. Dong, H. Zhang, C. H. Foh, and H. C. Chao, “Defending against new-flow attack in sdn-based internet

of things,” IEEE Access, vol. 5, pp. 3431–3443, 2017.

[15] S. Chakrabarty, D. W. Engels, and S. Thathapudi, “Black SDN for the Internet of Things,” in Mobile Ad Hoc and Sensor

Systems (MASS), 2015 IEEE 12th International Conference on. IEEE, 2015, pp. 190–198.

[16] P. Bull, R. Austin, E. Popov, M. Sharma, and R. Watson, “Flow based security for iot devices using an sdn gateway,” in

2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Aug 2016, pp. 157–163.

[17] S. Choi and J. Kwak, “Enhanced sdiot security framework models,” International Journal of Distributed Sensor Networks,

vol. 12, no. 5, 2016.

[18] I. Farris, J. Bernabe, N. Toumi, D. Garcia-Carrillo, T. Taleb, A. Skarmeta, and B. Sahlin., “Towards Provisioning of

SDN/NFV-based Security Enablers for Integrated Protection of IoT Systems,” in IEEE Conference on Standards for

Communications and Networking (CSCN-2017), 2017.

[19] C. Hecker and B. Hay, “Automated honeynet deployment for dynamic network environment,” in 2013 46th Hawaii

International Conference on System Sciences, Jan 2013, pp. 4880–4889.

[20] A. Guerra Manzanares, “Honeyio4: the construction of a virtual, low-interaction iot honeypot,” B.S. thesis, Universitat

Politècnica de Catalunya, 2017.

[21] P. Krishnaprasad, “Capturing attacks on iot devices with a multi-purpose iot honeypot,” Ph.D. dissertation, 2017.

[22] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai, and Y. Elovici, “Siphon: Towards

scalable high-interaction physical honeypots,” in Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security.

ACM, 2017, pp. 57–68.

[23] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, “Iotpot: analysing the rise of iot

compromises,” EMU, vol. 9, p. 1, 2015.

[24] W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn, “Honeymix: Toward sdn-based intelligent honeynet,” in Proceedings of the

2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization, ser.

SDN-NFV Security ’16. New York, NY, USA: ACM, 2016, pp. 1–6.

[25] N. Provos et al., “A virtual honeypot framework.” in USENIX Security Symposium, vol. 173, 2004, pp. 1–14.

[26] N. Memari, S. J. B. Hashim, and K. B. Samsudin, “Towards virtual honeynet based on lxc virtualization,” in 2014 IEEE

REGION 10 SYMPOSIUM, April 2014, pp. 496–501.

32

[27] W. Fan, D. Fernndez, and Z. Du, “Versatile virtual honeynet management framework,” IET Information Security, vol. 11,

no. 1, pp. 38–45, 2017.

[28] F. H. Abbasi and R. J. Harris, “Experiences with a generation iii virtual honeynet,” in 2009 Australasian Telecommunication

Networks and Applications Conference (ATNAC), Nov 2009, pp. 1–6.

[29] W. Fan and D. F. Cambronero, “A novel sdn based stealthy tcp connection handover mechanism for hybrid honeypot

systems,” in Proceedings of 2017 3rd IEEE Conference on Network Softwarization, July 2017. [Online]. Available:

http://oa.upm.es/45524/

[30] W. Fan, D. Fernández, and V. A. Villagrá, “Technology independent honeynet description language,” in Model-Driven

Engineering and Software Development (MODELSWARD), 2015 3rd International Conference on. IEEE, 2015, pp.

303–311.

[31] “Common Information Model (CIM), DMTF.” http://www.dmtf.org/standards/cim.

[32] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor network simulation with cooja,” in

Proceedings. 2006 31st IEEE Conference on Local Computer Networks, Nov 2006, pp. 641–648.

[33] C. Basile, “D4.2 Policy transformation and optimization techniques, Secured EU project.”

[34] R. Danyliw, J. Meijer, and Y. Demchenko, “The incident object description exchange format (iodef),” Internet Engineering

Task Force (IETF), RFC-5070, 2007.

[35] O. Forum, “Open command and control (openc2),” https://openc2.org/members.html.

