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Abstract 1

The standard scheduler of Hadoop does not consider 
the characteristics of jobs such as computational 
demand, inputs / outputs, dependencies, location of 
the data, etc., which could be a valuable source to 
allocate resources to jobs in order to optimize their 
use. The objective of this research is to take 
advantage of this information for planning, limiting 
the scope to ML / DM algorithms, in order to improve 
the execution times with respect to existing 
schedulers. The aim is to improve Hadoop job 
schedulers, seeking to optimize the execution times 
of machine learning and data mining algorithms in 
Clusters.
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1. Introduction

Recently, the valuable knowledge that can be 
extracted from the analysis of sets of large-scale data, 
has given rise to the so-called "Big Data". The term 
"Big Data" [1,2] refers to a collection of large data 
sets that can not be processed using traditional 
database administration tools. This generated 
numerous scientific challenges such as how to 
provide support for storage, manipulate and then 
retrieve information. In this sense, it is necessary to 
have capable infrastructures to process large volumes 
of data, in acceptable times and with limited 
computational resources. Solutions typically rely on 
concepts of parallel and distributed computing, where 
through Clusters and Computational Grids [3] allow 
processing Big Data at relatively low costs [4,5].

Although the fact that parallel and distributed 
computing appears as one of the most interesting 
alternatives to store and manipulate Big Data, some 
of its characteristics prevent its use by part of 
common users [6]. Aspects such as data 
dependencies, integrity, load balancing, planning and 
fault tolerance, although extremely difficult 
toaverage programmers, are crucial for Big Data 
solutions to be operational. For this reason, several 
frameworks have been proposed that abstract these 
aspects and provide high-level solutions for users and 
programmers [5,6,7,8,9,10,11]. Some of those 
frameworks they are based on specific programming 
paradigms such as Fork-Join, MapReduce and MPI. 
Recently, the MapReduce paradigm attracted 
attention due to its applicability in parallel 
computing, being widely used by Google in its 
distributed file system GFS [12]. The great novelty of 
the paradigm and its implementation in a framework 
consists of in that it conceals to the programmer great 
part of the complexity of parallelization and 
distribution. Thus, programmers can focus on the 
functionality of their programs, while the framework 
abstracts the complexity and control the underlying 
computational infrastructure. One of the most 
successful implementations of MapReduce is Apache 
Hadoop In addition, it provides solutions to store, 
manipulate and extract Big Data information in 
different ways. Around Hadoop has flourished an 
ecosystem of solutions for specific problems. Some 
examples are Pig, which facilitates the analysis of 
large datasets, Spark that speeds up MapReduce using 
structures in RAM and Mahout that aims to scale data 
mining and machine learning algorithms.

While these efforts have had a significant impact 
on research and industrial environments the diversity 
of uses of Hadoop has led to underperforming results
[13]. This is due, among other factors, to the 
scheduler, component responsible for assigning the
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computational resources of a Cluster to the works, is 
one of the aspects that most influence the 
performance of Hadoop. Originally, Hadoop includes 
three schedulers: FIFO, Fair and Capacity. The 
default scheduler is FIFO, which queues jobs in order 
of arrival and executes them. The Fair scheduler, 
developed by Facebook, seeks to allocate equitable 
Cluster resources to tasks. The Capacity scheduler 
was developed by Yahoo! to ensure equitable 
allocation for a large number of Cluster users.

Although these Hadoop schedulers give flexibility 
so that users can optimize the execution of their works 
to the Cluster, the resulting performance is often less 
than expected [14] resulting in not only delays in 
execution time, but also low use of Cluster resources. 
Some efforts have proposed ad-hoc schedulers for 
Hadoop that consider different aspects of both tasks 
and computational resources available.

In this paper we analyze and discuss previous 
efforts on improving Hadoop schedulers and present 
our current research to improve Hadoop schedulers. 
The rest of this paper is organized as follows. In 
Section 2 we provide background about Hadoop and 
its built-in schedulers. Then, Section 3 overviews and 
discuss the most representative research on Hadoop 
scheduling. Section 4 proposes possible current and 
future research towards improving Hadoop 
scheduling for machine learning and data mining 
tasks.

2. Background

A significant amount of research has been done in the 
field of Hadoop Job scheduling; however, there is still 
a need for research to overcome some of the 
challenges regarding scheduling of jobs in Hadoop 
clusters. Industries estimate that 20% of the data is in 
structured form while the remaining 80% of data is in 
semi structured form. This is a big challenge not only 
for volume and variety but also for data processing, 
which can lead to problems for I/O processing and job 
scheduling. Fig. 1 shows the architecture of a Hadoop 
distributed system.

As we know, this is an era of Big Data where 
machines process a significant amount of data, in the 
range of terabytes or petabytes, using various 
applications in fields such as science, business, and 
commerce. Such applications require a considerable 
amount of I/O processing and spend most of the time 
doing I/O processing, which is a major part of job 
scheduling. It is reported that at the Facebook and 
Microsoft Bing data centers, I/O processing requires 
79% of the jobs’ duration and 69% of the resources.

Therefore, here we present a comprehensive study of 
the most representative Hadoop schedulers.

Fig 1. Hadoop distributed system architecture

2.1. Apache Hadoop Ecosystem

The Apache Hadoop is a framework that allows the 
processing of large volumes of data through Cluster 
systems, using a simple programming model. In 
addition, its design allows the scalability from a few 
nodes to thousands of nodes in an agile way, 
achieving high efficiency in vertical scaling.

Fig. 2. Hadoop Ecosystem.

Hadoop is a distributed system that uses a Master- 
Slave architecture. In addition, it provides a 
distributed file system for storing data called the 
Hadoop Distributed File System (HDFS) and the Map 
Reduce programming paradigm to perform the 
calculations.

Hadoop is a very diverse ecosystem, which grows 
day after day. Hadoop has grown into a large family 
of solutions for the storage, management, interaction 
and analysis of large data, integrated into a rich open
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source ecosystem created by the community of the 
Apache Software Foundation (Fig. 2).

2.2. Job schedulers in Hadoop

The aim of job scheduling included in hadoop [15] is 
to enable faster processing of jobs and to reduce the 
response time as much as possible by using better 
techniques for scheduling depending on the jobs, 
along with the best utilization of resources. FIFO 
scheduling is default scheduling mode in Hadoop; the 
jobs coming first get higher priority than those 
coming later. In some situations, this type of 
scheduling has a disadvantage, that is, when longer 
jobs are scheduled prior to shorter jobs, it leads to 
starvation.

Fair scheduling shares the resources equally 
among all jobs. Capacity scheduling was introduced 
by Yahoo. It maximizes the utilization of resources 
and throughput in Clusters. LATE [16] scheduling 
policy was developed to optimize the performance of 
jobs and to minimize the job response time by 
detecting slow running processes in a Cluster and 
launching equivalence processes as the background. 
Facebook uses Delay scheduling to achieve better 
performance and lower response time for map tasks 
by applying changes to MapReduce. In deadline 
scheduler, the deadline constraints are specified by 
the user before scheduling the jobs in order to 
increase system utilization.

Resource aware scheduling improves resource 
utilization; it uses node, master node, and worked 
node to complete job scheduling. In matchmaking 
scheduling [17], each node is marked by the locality 
marker, which ensures that every node gets an 
equitable chance to seize a local task. Through this 
scheduling, high data locality and better cluster 
utilization is achieved.

There have already been a few review papers on 
job scheduling algorithms for Big data processing.
[14] presented a comparative study on job scheduling 
methods and discussed their strengths and weakness. 
[18] presented a review on scheduling algorithms and 
provided guidelines for the improvement of 
scheduling algorithms in Hadoop MapReduce. [19] 
presented a survey on Big data management and 
discussed various scheduling algorithms in Hadoop. 
They also discussed the latest advancements related 
to scheduling algorithms. [20] presented a paper on 
the scheduling policies for Hadoop and performed a 
comparative study on MapReduce optimization 
techniques.

2.3 Major challenges for job scheduling in 
Big data

There is a clear need for efficient scheduling 
algorithms for the management of Big data on various 
nodes in Hadoop clusters, in particular for supporting 
the execution of machine learning and data mining 
algorithms. There are various factors that affect the 
performance of scheduling policies such as data 
volume (storage), format of data sources (data 
variety), speed (data velocity), security and privacy, 
cost, connectivity, and data sharing. To achieve better 
utilization of resources and management of Big data, 
new scheduling policies should be designed. The next 
sections describe some of the main challenges that 
face job scheduling.

2.3.1. Data volume (storage)
An important problem of Big data is that it is very 
huge and includes data that is in unstructured formats, 
which makes it difficult to organize the data for 
analysis. Data includes both structured and 
unstructured data; the storage of unstructured data is 
not an easy task.

2.3.2. Format of data sources (data variety)
Data comes into Big data from various homogeneous 
as well as heterogeneous resources, and this causes 
many problems due to the heterogeneity of data 
resources, data format, and infrastructure

2.3.3. Speed (data velocity)
Today, everybody expects everything to be done 
instantaneously. The speed is an important issue in 
Big data. Speed of Big data is restricted by various 
problems such as query/retrieval problem, import/ 
export problem, real time/offline problem, and 
statistical analysis problem.

2.3.4. Connectivity and data sharing
Data sharing and connectivity are still issues that need 
to be considered. At present, a majority of the data 
points are not yet connected. There are various issues 
in Big data related to connectivity and data sharing 
such as data standard and interfaces, access 
permissions, and shared protocols.

2.3.5. Cost
Cost is also an issue in Big data. The cost up- 
gradation issues in Big data are cost comparison 
between master and slave nodes, and upgrade or 
modification of nodes.
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3. Custom Hadoop Schedulers

Some works have studied the behavior of the 
schedulers included with Hadoop and proposed 
improvements [14,21] proposed an analytical model 
for FIFO and Fair schedulers based on experimental 
measurements and source code analysis. For a class 
of Map jobs with heavy-tailed service times, the 
authors found problems of starvation with the Fair 
scheduler due to the way of launching Reduce tasks. 
To reduce that, the Coupling scheduler was proposed 
that couples the advance of Mappers and Reducers, as 
well as optimizing the locations for both, achieving 
mitigation of the problem of starvation and improving 
the data locality.

In [18] proposed an improvement for the FIFO 
scheduler that takes into account the location of the 
data and characteristics of the works. In essence, it 
adopts different policies for jobs linked to CPU or 
input / output based on data locality. As a result, it is 
possible to reduce the data transfer and the execution 
time of the works. Similarly, [19] designed a 
scheduler based on dynamic priorities whose 
objective is to reduce the latency for jobs of variable 
length. The work focuses on intensive data work, so 
it tries to maintain the data location during execution.

Other authors have investigated how to deal with 
Clusters formed by heterogeneous hardware. [20] 
presented a scheduler that uses the heterogeneity and 
mix of workloads to optimize jobs that use the same 
data sets. Although the scheduler has only been 
simulated, it is based on the idea of looking for the 
best node of the Cluster to run, based on the idea that 
a large percentage of MapReduce jobs have the same 
characteristics in terms of CPU, network and disk 
usage. The scheduler classifies Cluster jobs as linked 
to CPU or input / output, similarly the nodes classifies 
them as good for CPU or input / output and then 
performs the assignment. [22] proposed a self
adaptive scheduler that takes into account that 
different nodes require different time to complete the 
same tasks due to their differences such as processing, 
communication, architectures and memory. The 
scheduler uses historical information about each 
cluster node to adjust execution parameters and 
discover slow tasks. Thus, you can launch backup 
tasks in other nodes, also taking into account the data 
locality. [23] develops criteria to schedule schedulers 
based on restrictions of deadlines specified by the 
user and discusses the implementation and 
preliminary evaluation of a scheduler of Deadlines 
Restrictions for Hadoop that ensures that only jobs 
whose deadlines can be met are planned for 
execution.

In [24] on the contrary, the authors focus on the 
heterogeneity of the tasks, proposing a scheduler that

uses information such as job income rates and 
average execution times to make better decisions.

In [25] a quantitative approach is adopted where a 
first detailed study of the behavior of several 
applications on Hadoop that run on four different 
hardware configurations, to ensure that the data 
associated with the jobs are available locally to a 
cluster in a multi-cluster implementation. On the 
other hand, the work of [26], observe the changes in 
the load of the nodes to assign jobs more intelligently.

In [27] the conflict between locality and equity is 
addressed, and a simple algorithm called delay 
programming is proposed: when the work that must 
be scheduled according to equity can not start a local 
task, it waits a small amount of time, allowing others 
jobs start tasks in their place. It was verified that the 
schedule of delays reaches an almost optimal data 
location in a variety of workloads and can increase 
performance, while preserving fairness. In addition, 
the simplicity of delay programming makes it 
applicable under a wide variety of programming 
policies in addition to fair exchange.

Finally, [28] studied the interactions between jobs 
and their intermediate results to group multiple jobs 
into one and thus reduce the number of queries to 
access shared intermediate data.

4. Current and Future Research

The purpose of this research work is to study the 
improvement of time in the exploration and analysis 
of data sets using an improvement over the schedulers 
implemented in Hadoop for machine learning and 
data mining jobs. New schedulers algorithms will 
also be implemented that will make a better 
assignment of jobs to the cluster, obtaining 
advantages in terms of better use of resources and 
execution times with respect to schedulers such as 
FIFO schedulers. Machine learning and data mining 
algorithms have a distinctive characteristic: they 
involve executing the same algorithm many times 
over different parts of a input dataset.

The CPU load, network usage and input / output 
will be analyzed, by executing jobs generated by 
machine learning and data mining algorithms when 
executed on Hadoop with large and publicly available 
datasets. It is intended in a first stage to derive models 
or profiles of resource use of the aforementioned 
works considering a space of variability in the data 
sets and using two Clusters with different hardware 
characteristics.

The methodology will be similar to that of [29, 
30,31] where once the characteristics of the works 
have been outlined, a simulator developed by the 
working group will be adapted in order to analyze 
planning alternatives that improve the execution 
times and resource utilization. Similar to [32], where
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the scheduler uses estimated information on 
availability of resources to achieve better 
performance in the execution of tasks in desktop 
Grids, in this plan estimates will be used on the tasks, 
starting from the base that the algorithms have well- 
known behavior and temporal/spatial complexity.

The starting point to obtain job data and then 
outline its characteristics will be existing 
implementations of machine learning and data mining 
algorithms. A good alternative for this is Mahout2 that 
offers Hadoop implementations of Naive Bayes 
classification, k-means clustering, collaborative 
filtering and recommendation algorithms based on 
ALS (Alternating Least Squares), among others. 
Executions of these algorithms using data sets such as 
those available in the UC Irvine Machine Learning 
Repository3 will provide data on the use of resources 
and performance. From these data, jobs will be 
grouped according to their demands, resulting 
performance, input data characteristics, etc.

In a first stage, optimized schedulers for the 
profiled jobs will be simulated. Once obtained results 
in this stage, the improvements in executions in the 
Cluster available in the UNSJ of San Juan and in the 
ISISTAN of Tandil will be verified. Simulations / 
tests will be carried out again until satisfactory 
solutions are achieved.
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