
VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Job Schedulers for Machine Learning and Data Mining
algorithms distributed in Hadoop

1 C o r n e jo , F é l i x M a r t i n ; 2 Z u n i n o , A le j a n d r o ; 3 M u r a z z o , M a r í a

1,3 Departamento de Informática, Universidad Nacional de San Juan;

2 Instituto Superior de Ingeniería de Software de Tandil, Universidad Nacional del centro de la provincia de
Buenos Aires

1 fmartin.cornejo@gmail.com; 2 azunino@gmail.com; 3 maritemurazzo@gmail.com

Abstract 1

The standard scheduler of Hadoop does not consider
the characteristics of jobs such as computational
demand, inputs / outputs, dependencies, location of
the data, etc., which could be a valuable source to
allocate resources to jobs in order to optimize their
use. The objective of this research is to take
advantage of this information for planning, limiting
the scope to ML / DM algorithms, in order to improve
the execution times with respect to existing
schedulers. The aim is to improve Hadoop job
schedulers, seeking to optimize the execution times
of machine learning and data mining algorithms in
Clusters.

Keywords: Big Data, Hadoop, schedulers of Hadoop,
ML/DM algorithms, machine learning.

1. Introduction

Recently, the valuable knowledge that can be
extracted from the analysis of sets of large-scale data,
has given rise to the so-called "Big Data". The term
"Big Data" [1,2] refers to a collection of large data
sets that can not be processed using traditional
database administration tools. This generated
numerous scientific challenges such as how to
provide support for storage, manipulate and then
retrieve information. In this sense, it is necessary to
have capable infrastructures to process large volumes
of data, in acceptable times and with limited
computational resources. Solutions typically rely on
concepts of parallel and distributed computing, where
through Clusters and Computational Grids [3] allow
processing Big Data at relatively low costs [4,5].

Although the fact that parallel and distributed
computing appears as one of the most interesting
alternatives to store and manipulate Big Data, some
of its characteristics prevent its use by part of
common users [6]. Aspects such as data
dependencies, integrity, load balancing, planning and
fault tolerance, although extremely difficult
toaverage programmers, are crucial for Big Data
solutions to be operational. For this reason, several
frameworks have been proposed that abstract these
aspects and provide high-level solutions for users and
programmers [5,6,7,8,9,10,11]. Some of those
frameworks they are based on specific programming
paradigms such as Fork-Join, MapReduce and MPI.
Recently, the MapReduce paradigm attracted
attention due to its applicability in parallel
computing, being widely used by Google in its
distributed file system GFS [12]. The great novelty of
the paradigm and its implementation in a framework
consists of in that it conceals to the programmer great
part of the complexity of parallelization and
distribution. Thus, programmers can focus on the
functionality of their programs, while the framework
abstracts the complexity and control the underlying
computational infrastructure. One of the most
successful implementations of MapReduce is Apache
Hadoop In addition, it provides solutions to store,
manipulate and extract Big Data information in
different ways. Around Hadoop has flourished an
ecosystem of solutions for specific problems. Some
examples are Pig, which facilitates the analysis of
large datasets, Spark that speeds up MapReduce using
structures in RAM and Mahout that aims to scale data
mining and machine learning algorithms.

While these efforts have had a significant impact
on research and industrial environments the diversity
of uses of Hadoop has led to underperforming results
[13]. This is due, among other factors, to the
scheduler, component responsible for assigning the

62

mailto:fmartin.cornejo@gmail.com
mailto:azunino@gmail.com
mailto:maritemurazzo@gmail.com

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

computational resources of a Cluster to the works, is
one of the aspects that most influence the
performance of Hadoop. Originally, Hadoop includes
three schedulers: FIFO, Fair and Capacity. The
default scheduler is FIFO, which queues jobs in order
of arrival and executes them. The Fair scheduler,
developed by Facebook, seeks to allocate equitable
Cluster resources to tasks. The Capacity scheduler
was developed by Yahoo! to ensure equitable
allocation for a large number of Cluster users.

Although these Hadoop schedulers give flexibility
so that users can optimize the execution of their works
to the Cluster, the resulting performance is often less
than expected [14] resulting in not only delays in
execution time, but also low use of Cluster resources.
Some efforts have proposed ad-hoc schedulers for
Hadoop that consider different aspects of both tasks
and computational resources available.

In this paper we analyze and discuss previous
efforts on improving Hadoop schedulers and present
our current research to improve Hadoop schedulers.
The rest of this paper is organized as follows. In
Section 2 we provide background about Hadoop and
its built-in schedulers. Then, Section 3 overviews and
discuss the most representative research on Hadoop
scheduling. Section 4 proposes possible current and
future research towards improving Hadoop
scheduling for machine learning and data mining
tasks.

2. Background

A significant amount of research has been done in the
field of Hadoop Job scheduling; however, there is still
a need for research to overcome some of the
challenges regarding scheduling of jobs in Hadoop
clusters. Industries estimate that 20% of the data is in
structured form while the remaining 80% of data is in
semi structured form. This is a big challenge not only
for volume and variety but also for data processing,
which can lead to problems for I/O processing and job
scheduling. Fig. 1 shows the architecture of a Hadoop
distributed system.

As we know, this is an era of Big Data where
machines process a significant amount of data, in the
range of terabytes or petabytes, using various
applications in fields such as science, business, and
commerce. Such applications require a considerable
amount of I/O processing and spend most of the time
doing I/O processing, which is a major part of job
scheduling. It is reported that at the Facebook and
Microsoft Bing data centers, I/O processing requires
79% of the jobs’ duration and 69% of the resources.

Therefore, here we present a comprehensive study of
the most representative Hadoop schedulers.

Fig 1. Hadoop distributed system architecture

2.1. Apache Hadoop Ecosystem

The Apache Hadoop is a framework that allows the
processing of large volumes of data through Cluster
systems, using a simple programming model. In
addition, its design allows the scalability from a few
nodes to thousands of nodes in an agile way,
achieving high efficiency in vertical scaling.

Fig. 2. Hadoop Ecosystem.

Hadoop is a distributed system that uses a Master-
Slave architecture. In addition, it provides a
distributed file system for storing data called the
Hadoop Distributed File System (HDFS) and the Map
Reduce programming paradigm to perform the
calculations.

Hadoop is a very diverse ecosystem, which grows
day after day. Hadoop has grown into a large family
of solutions for the storage, management, interaction
and analysis of large data, integrated into a rich open

63

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

source ecosystem created by the community of the
Apache Software Foundation (Fig. 2).

2.2. Job schedulers in Hadoop

The aim of job scheduling included in hadoop [15] is
to enable faster processing of jobs and to reduce the
response time as much as possible by using better
techniques for scheduling depending on the jobs,
along with the best utilization of resources. FIFO
scheduling is default scheduling mode in Hadoop; the
jobs coming first get higher priority than those
coming later. In some situations, this type of
scheduling has a disadvantage, that is, when longer
jobs are scheduled prior to shorter jobs, it leads to
starvation.

Fair scheduling shares the resources equally
among all jobs. Capacity scheduling was introduced
by Yahoo. It maximizes the utilization of resources
and throughput in Clusters. LATE [16] scheduling
policy was developed to optimize the performance of
jobs and to minimize the job response time by
detecting slow running processes in a Cluster and
launching equivalence processes as the background.
Facebook uses Delay scheduling to achieve better
performance and lower response time for map tasks
by applying changes to MapReduce. In deadline
scheduler, the deadline constraints are specified by
the user before scheduling the jobs in order to
increase system utilization.

Resource aware scheduling improves resource
utilization; it uses node, master node, and worked
node to complete job scheduling. In matchmaking
scheduling [17], each node is marked by the locality
marker, which ensures that every node gets an
equitable chance to seize a local task. Through this
scheduling, high data locality and better cluster
utilization is achieved.

There have already been a few review papers on
job scheduling algorithms for Big data processing.
[14] presented a comparative study on job scheduling
methods and discussed their strengths and weakness.
[18] presented a review on scheduling algorithms and
provided guidelines for the improvement of
scheduling algorithms in Hadoop MapReduce. [19]
presented a survey on Big data management and
discussed various scheduling algorithms in Hadoop.
They also discussed the latest advancements related
to scheduling algorithms. [20] presented a paper on
the scheduling policies for Hadoop and performed a
comparative study on MapReduce optimization
techniques.

2.3 Major challenges for job scheduling in
Big data

There is a clear need for efficient scheduling
algorithms for the management of Big data on various
nodes in Hadoop clusters, in particular for supporting
the execution of machine learning and data mining
algorithms. There are various factors that affect the
performance of scheduling policies such as data
volume (storage), format of data sources (data
variety), speed (data velocity), security and privacy,
cost, connectivity, and data sharing. To achieve better
utilization of resources and management of Big data,
new scheduling policies should be designed. The next
sections describe some of the main challenges that
face job scheduling.

2.3.1. Data volume (storage)
An important problem of Big data is that it is very
huge and includes data that is in unstructured formats,
which makes it difficult to organize the data for
analysis. Data includes both structured and
unstructured data; the storage of unstructured data is
not an easy task.

2.3.2. Format of data sources (data variety)
Data comes into Big data from various homogeneous
as well as heterogeneous resources, and this causes
many problems due to the heterogeneity of data
resources, data format, and infrastructure

2.3.3. Speed (data velocity)
Today, everybody expects everything to be done
instantaneously. The speed is an important issue in
Big data. Speed of Big data is restricted by various
problems such as query/retrieval problem, import/
export problem, real time/offline problem, and
statistical analysis problem.

2.3.4. Connectivity and data sharing
Data sharing and connectivity are still issues that need
to be considered. At present, a majority of the data
points are not yet connected. There are various issues
in Big data related to connectivity and data sharing
such as data standard and interfaces, access
permissions, and shared protocols.

2.3.5. Cost
Cost is also an issue in Big data. The cost up-
gradation issues in Big data are cost comparison
between master and slave nodes, and upgrade or
modification of nodes.

64

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

3. Custom Hadoop Schedulers

Some works have studied the behavior of the
schedulers included with Hadoop and proposed
improvements [14,21] proposed an analytical model
for FIFO and Fair schedulers based on experimental
measurements and source code analysis. For a class
of Map jobs with heavy-tailed service times, the
authors found problems of starvation with the Fair
scheduler due to the way of launching Reduce tasks.
To reduce that, the Coupling scheduler was proposed
that couples the advance of Mappers and Reducers, as
well as optimizing the locations for both, achieving
mitigation of the problem of starvation and improving
the data locality.

In [18] proposed an improvement for the FIFO
scheduler that takes into account the location of the
data and characteristics of the works. In essence, it
adopts different policies for jobs linked to CPU or
input / output based on data locality. As a result, it is
possible to reduce the data transfer and the execution
time of the works. Similarly, [19] designed a
scheduler based on dynamic priorities whose
objective is to reduce the latency for jobs of variable
length. The work focuses on intensive data work, so
it tries to maintain the data location during execution.

Other authors have investigated how to deal with
Clusters formed by heterogeneous hardware. [20]
presented a scheduler that uses the heterogeneity and
mix of workloads to optimize jobs that use the same
data sets. Although the scheduler has only been
simulated, it is based on the idea of looking for the
best node of the Cluster to run, based on the idea that
a large percentage of MapReduce jobs have the same
characteristics in terms of CPU, network and disk
usage. The scheduler classifies Cluster jobs as linked
to CPU or input / output, similarly the nodes classifies
them as good for CPU or input / output and then
performs the assignment. [22] proposed a self
adaptive scheduler that takes into account that
different nodes require different time to complete the
same tasks due to their differences such as processing,
communication, architectures and memory. The
scheduler uses historical information about each
cluster node to adjust execution parameters and
discover slow tasks. Thus, you can launch backup
tasks in other nodes, also taking into account the data
locality. [23] develops criteria to schedule schedulers
based on restrictions of deadlines specified by the
user and discusses the implementation and
preliminary evaluation of a scheduler of Deadlines
Restrictions for Hadoop that ensures that only jobs
whose deadlines can be met are planned for
execution.

In [24] on the contrary, the authors focus on the
heterogeneity of the tasks, proposing a scheduler that

uses information such as job income rates and
average execution times to make better decisions.

In [25] a quantitative approach is adopted where a
first detailed study of the behavior of several
applications on Hadoop that run on four different
hardware configurations, to ensure that the data
associated with the jobs are available locally to a
cluster in a multi-cluster implementation. On the
other hand, the work of [26], observe the changes in
the load of the nodes to assign jobs more intelligently.

In [27] the conflict between locality and equity is
addressed, and a simple algorithm called delay
programming is proposed: when the work that must
be scheduled according to equity can not start a local
task, it waits a small amount of time, allowing others
jobs start tasks in their place. It was verified that the
schedule of delays reaches an almost optimal data
location in a variety of workloads and can increase
performance, while preserving fairness. In addition,
the simplicity of delay programming makes it
applicable under a wide variety of programming
policies in addition to fair exchange.

Finally, [28] studied the interactions between jobs
and their intermediate results to group multiple jobs
into one and thus reduce the number of queries to
access shared intermediate data.

4. Current and Future Research

The purpose of this research work is to study the
improvement of time in the exploration and analysis
of data sets using an improvement over the schedulers
implemented in Hadoop for machine learning and
data mining jobs. New schedulers algorithms will
also be implemented that will make a better
assignment of jobs to the cluster, obtaining
advantages in terms of better use of resources and
execution times with respect to schedulers such as
FIFO schedulers. Machine learning and data mining
algorithms have a distinctive characteristic: they
involve executing the same algorithm many times
over different parts of a input dataset.

The CPU load, network usage and input / output
will be analyzed, by executing jobs generated by
machine learning and data mining algorithms when
executed on Hadoop with large and publicly available
datasets. It is intended in a first stage to derive models
or profiles of resource use of the aforementioned
works considering a space of variability in the data
sets and using two Clusters with different hardware
characteristics.

The methodology will be similar to that of [29,
30,31] where once the characteristics of the works
have been outlined, a simulator developed by the
working group will be adapted in order to analyze
planning alternatives that improve the execution
times and resource utilization. Similar to [32], where

65

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

the scheduler uses estimated information on
availability of resources to achieve better
performance in the execution of tasks in desktop
Grids, in this plan estimates will be used on the tasks,
starting from the base that the algorithms have well-
known behavior and temporal/spatial complexity.

The starting point to obtain job data and then
outline its characteristics will be existing
implementations of machine learning and data mining
algorithms. A good alternative for this is Mahout2 that
offers Hadoop implementations of Naive Bayes
classification, k-means clustering, collaborative
filtering and recommendation algorithms based on
ALS (Alternating Least Squares), among others.
Executions of these algorithms using data sets such as
those available in the UC Irvine Machine Learning
Repository3 will provide data on the use of resources
and performance. From these data, jobs will be
grouped according to their demands, resulting
performance, input data characteristics, etc.

In a first stage, optimized schedulers for the
profiled jobs will be simulated. Once obtained results
in this stage, the improvements in executions in the
Cluster available in the UNSJ of San Juan and in the
ISISTAN of Tandil will be verified. Simulations /
tests will be carried out again until satisfactory
solutions are achieved.

5. References

[1] Paul C. Zikopoulos, Chris Eaton, Drik deRoos,
Thomas Deutsch, and George Lapis.
Understanding Big Data - Analytics for
Enterprise Class Hadoop and Streaming Data.
2012.

[2] Alejandro Corbellini, Cristian Mateos, Alejandro
Zunino, Daniela Godoy, and Silvia N.
Schiaffino.Persisting big-data: The nosql
landscape. Inf. Syst., 63:1-23, 2017b. doi:
10.1016/j.is.2016.07.009. URL
https://doi.org/10.1016/j.is.2016.07.009.

[3] Daniel S. Katz and Xiaobo Zhou. Leading-edge
research in cluster, cloud, and grid computing:
Best papers from the ieee/acm {CCGrid} 2015
conference. Future Generation Computer
Systems, 72:78 - 80, 2017. ISSN 0167-739X.
doi:https://doi.org/10.1016/j.future.2016.09.016.
URL
http://www.sciencedirect.com/science/article/pii
/S0167739X16303557.

[4] A. Tommasel, A. Corbellini, D. Godoy, and S.
Schiaffino. Personality-aware followee
recommendation algorithms: An empirical

2 http://mahout.apache.org

analysis. Engineering Applications of Artificial
Intelligence, 51: 24-36, 2016.

[5] A. Corbellini, C. Mateos, D. Godoy, A. Zunino,
and S. Schiaffino. An architecture and platform
for developing distributed recommendation
algorithms on large-scale social networks.
Journal of Information Science, 41(5):686-704,
2015.

[6] Cristian Mateos, Alejandro Zunino, and Marcelo
Campo. Jgrim: An approach for easy
gridification of applications. Future Generation
Computer Systems, 24(2):99 - 118, 2008a. ISSN
0167-739X. doi:
http://dx.doi.org/10.1016/jiuture.2007.04.011.
URL:
http://www.sciencedirect.com/science/article/pii
/S0167739X07000854.

[7] Pieter Hijma, Rob V. van Nieuwpoort, Ceriel
J.H. Jacobs, and Henri E. Bal. Generating
synchronization statements in divide-and-
conquer programs. Parallel Computing, 38(1):75
- 89, 2012. ISSN 0167-8191. doi:
http://dx.doi.org/10.1016/j.parco.2011.10.007.
URL:
http://www.sciencedirect.com/science/article/pii
/S0167819111001384. Extensions for Next-
Generation Parallel Programming Models

[8] Alejandro Corbellini, Daniela Godoy, Cristian
Mateos, Silvia Schiaffino, and Alejandro Zunino.
DPM: A novel distributed large-scale social
graph processing framework for link prediction
algorithms. Future Generation Computer
Systems, 2017a. En prensa.

[9] M. Arroqui, J. Rodriguez Alvarez, H. Vazquez,
C. Machado, Cristian Mateos, and Alejandro
Zunino. JASAG: A gridification tool for
agricultural simulation applications.
Concurrency and Computation: Practice and
Experience, 27(17):4716-4740, 2015.

[10] Rob V. van Nieuwpoort, Jason Maassen, Rutger
Hofman, Thilo Kielmann, and Henri E. Bal. Ibis:
An efficient java-based grid programming
environment. In Proceedings of the 2002 Joint
ACMISCOPE Conference on Java Grande, JGI
’02, pages 18-27, New York, NY, USA, 2002.
ACM. ISBN 1-58113-599-8. doi:
10.1145/583810.583813. URL
http://doi.acm.org/10.1145/583810.583813.

[11] Craig Chambers, Ashish Raniwala, Frances
Perry, Stephen Adams, Robert R. Henry, Robert
Bradshaw, and Nathan Weizenbaum. Flumejava:
Easy, efficient data-parallel pipelines. SIGPLAN

3 http://archive.ics.uci.edu/ml/index.php

66

https://doi.org/10.1016/j.is.2016.07.009
https://doi.org/10.1016/j.future.2016.09.016
http://www.sciencedirect.com/science/article/pii/S0167739X16303557
http://www.sciencedirect.com/science/article/pii/S0167739X16303557
http://mahout.apache.org
http://dx.doi.org/10.1016/jiuture.2007.04.011
http://www.sciencedirect.com/
http://dx.doi.org/10.1016/j.parco.2011.10.007
http://www.sciencedirect.com/science/article/pii
http://doi.acm.org/10.1145/583810.583813
http://archive.ics.uci.edu/ml/index.php

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Not., 45(6):363-375, June 2010. ISSN 0362
1340. doi: 10.1145/1809028.1806638. URL
http://doi.acm.org/10.1145/1809028.1806638.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The google file system. In
Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03,
pages 29-43, New York, NY, USA, 2003. ACM.
ISBN 1-58113-757-5. doi:
10.1145/945445.945450. URL
http://doi.acm.org/10.1145/945445.945450.

[13] Ivanilton Polato, Reginaldo RAc , Alfredo
Goldman, and Fabio Kon. A comprehensive
view of hadoop research-a systematic literature
review. Journal o f Network and Computer
Applications, 46:1 - 25, 2014. ISSN 1084-8045.
doi:
http ://dx. doi.org/10.1016/jjnca.2014.07.022.
URL:
http://www.sciencedirect.com/science/article/pii
/S1084804514001635

[14] D. Yoo and K. M. Sim. A comparative review of
job scheduling for mapreduce. In 2011 IEEE
International Conference on Cloud Computing
and Intelligence Systems, pages 353-358, Sept
2011. doi: 10.1109/CCIS.2011.6045089.

[15] J.V. Gautam, H.B. Prajapati, V.K. Dabhi, S.
Chaudhary, A survey on job scheduling
algorithms in big data processing, in: IEEE
International Conference on Electrical,
Computer and Communication Technologies
(ICECCT15), Coimbatore, 2015, pp. 1-11.

[16] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz,
I. Stoica, “Improving MapReduce performance
in heterogeneous 46 environments”, in: Proc. 8th
USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008, San
Diego,USA, Dec. 2008.

[17] He, C., Lu, Y., & Swanson, D. (2011).
Matchmaking: A New MapReduce Scheduling
Technique. In 2011 IEEE Third International
Conference on Cloud Computing Technology
and Science (pp. 40-47). IEEE.
https://doi.org/10.1109/CloudCom.2011.16

[18] Y. Tao, Q. Zhang, L. Shi, and P. Chen. Job
scheduling optimization for multi-user
mapreduce clusters. In 2011 Fourth International
Symposium on Parallel Architectures,
Algorithms and Programming, pages 213-217,
Dec 2011. doi: 10.1109/PAAP.2011.33.

[19] P. Nguyen, T. Simon, M. Halem, D. Chapman,
and Q. Le. A hybrid scheduling algorithm for
data intensive workloads in a mapreduce
environment. In 2012 IEEE Fifth International

Conference on Utility and Cloud Computing,
pages 161 -167, Nov 2012. doi:
10.1109/UCC.2012.32.

[20] Sreedhar, C., Kasiviswanath, N., & Chenna
Reddy, P. (2018). Performance Enhancement of
Hadoop for Big Data Using Multilevel Queue
Migration (MQM) Technique (pp. 331-342).
https://doi.org/10.1007/978-981-10-8237-5_32

[21] Jyoti V. Gautam, Harshad kumar B. Prajapati,
Vipul K. Dabhi, Sanjay Chaudhary, A survey on
job scheduling algorithms in big data processing,
IEE Conf. Pap. (March 2015),
http://dx.doi.org/10.1109/ICECCT.2015.722603
5

[22] Jian Tan, Xiaoqiao Meng, and Li Zhang. Delay
tails in mapreduce scheduling. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement
and Modeling of Computer Systems,
SIGMETRICS ’12, pages 5-16, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1097-0.
doi: 10.1145/2254756.2254761. URL
http://doi.acm.org/ 10.1145/2254756.2254761.

[23] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S.
Guo. Samr: A self-adaptive mapreduce
scheduling algorithm in heterogeneous
environment. In 2010 10th IEEE International
Conference on Computer and Information
Technology, pages 2736-2743, June 2010. doi:
10.1109/CIT.2010.458.

[24] Kc, K., & Anyanwu, K. (2010). Scheduling
Hadoop Jobs to Meet Deadlines. In 2010 IEEE
Second International Conference on Cloud
Computing Technology and Science (pp. 388
392). IEEE.
https://doi.org/10.1109/CloudCom.2010.97

[25] Aysan Rasooli and Douglas G. Down. An
adaptive scheduling algorithm for dynamic
heterogeneous hadoop systems. In Proceedings
of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research,
CASCON ’11, pages 30-44, Riverton, NJ, USA,
2011. IBM Corp. URL
http://dl.acm.org/citation.cfm?id=2093889.2093
893.

[26] Krish, K. R., Anwar, A., & Butt, A. R. (2014).
[phi]Sched: A Heterogeneity-Aware Hadoop
Workflow Scheduler. In 2014 IEEE 22nd
International Symposium on Modelling, Analysis
6 Simulation o f Computer and
Telecommunication Systems (pp. 255-264).
IEEE.
https://doi.org/10.1109/MASCOTS.2014.40

67

http://doi.acm.org/10.1145/1809028.1806638
http://doi.acm.org/10.1145/945445.945450
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
https://doi.org/10.1109/CloudCom.2011.16
https://doi.org/10.1007/978-981-10-8237-5_32
http://dx.doi.org/10.1109/ICECCT.2015.7226035
http://dx.doi.org/10.1109/ICECCT.2015.7226035
http://doi.acm.org/
https://doi.org/10.1109/CloudCom.2010.97
http://dl.acm.org/citation.cfm?id=2093889.2093
https://doi.org/10.1109/MASCOTS.2014.40

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

[27] Hsin-Han You, Chun-Chung Yang, and Jiun-
Long Huang. A load-aware scheduler for
mapreduce framework in heterogeneous cloud
environments. In Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC ’11,
pages 127-132, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0113-8. doi:
10.1145/1982185.1982218. URL
http://doi.acm.org/10.1145/1982185.1982218.

[28] Zaharia, M., Borthakur, D., Sen Sarma, J.,
Elmeleegy, K., Shenker, S., & Stoica, I. (2010).
Delay scheduling. In Proceedings o f the 5th
European conference on Computer systems -
EuroSys ’10 (p. 265). New York, New York,
USA: ACM Press.
https://doi.org/10.1145/1755913.1755940

[29] Tomasz Nykiel, Michalis Potamias, Chaitanya
Mishra, George Kollios, and Nick Koudas.
Mrshare: Sharing across multiple queries in
mapreduce. Proc. VLDB Endow., 3(1-2):494-
505, September 2010. ISSN 2150-8097. doi:
10.14778/1920841.1920906. URL
http://dx.doi.org/10.14778/1920841.1920906.

[30] Juan Manuel Rodriguez, Cristian Mateos, and
Alejandro Zunino. Energy-efficient job stealing
for cpuintensive processing in mobile devices.
Computing, 96(2):87-117, Feb 2014. ISSN

1436-5057.doi:10.1007/s00607-012-0245-
5.URL http://dx.doi.org/10.1007/s00607-012-
0245-5.

[31] Matías Hirsch, Juan Manuel Rodriguez, Cristian
Mateos, and Alejandro Zunino. A two-phase
energy-aware scheduling approach for cpu
intensive jobs in mobile grids. J. Grid Comput.,
15(1):55-80, 2017. doi: 10.1007/s10723-016-
9387-6. URL https://doi.org/10.1007/ s10723-
016-9387-6.

[32] Sergio Ariel Salinas, Carlos García Garino, and
Alejandro Zunino. PFS: A productivity
forecasting system for desktop computers to
improve grid applications performance in
enterprise desktop grid. Computing and
Informatics, 33(4):783-809, 2014.URL
http://www.cai.sk/ojs/index.php/cai/article/view
/878

68

http://doi.acm.org/10.1145/1982185.1982218
https://doi.org/10.1145/1755913.1755940
http://dx.doi.org/10.14778/1920841.1920906
http://dx.doi.org/10.1007/s00607-012-0245-5
http://dx.doi.org/10.1007/s00607-012-0245-5
https://doi.org/10.1007/
http://www.cai.sk/ojs/index.php/cai/article/view

