18 research outputs found

    Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery

    Full text link
    [EN] Development of bioinspired nanomachines with an efficient propulsion and cargo-towing has attracted much attention in the last years due to their potential biosensing, diagnostics, and therapeutics applications. In this context, self-propelled synthetic nanomotors are promising carriers for intelligent and controlled release of therapeutic payloads. However, the implementation of this technology in real biomedical applications is still facing several challenges. Herein, we report the design, synthesis, and characterization of innovative multifunctional gated platinum¿mesoporous silica nanomotors constituted of a propelling element (platinum nanodendrite face), a drug-loaded nanocontainer (mesoporous silica nanoparticle face), and a disulfide-containing oligo(ethylene glycol) chain (S¿S¿PEG) as a gating system. These Janus-type nanomotors present an ultrafast self-propelled motion due to the catalytic decomposition of low concentrations of hydrogen peroxide. Likewise, nanomotors exhibit a directional movement, which drives the engines toward biological targets, THP-1 cancer cells, as demonstrated using a microchip device that mimics penetration from capillary to postcapillary vessels. This fast and directional displacement facilitates the rapid cellular internalization and the on-demand specific release of a cytotoxic drug into the cytosol, due to the reduction of the disulfide bonds of the capping ensemble by intracellular glutathione levels. In the microchip device and in the absence of fuel, nanomotors are neither able to move directionally nor reach cancer cells and deliver their cargo, revealing that the fuel is required to get into inaccessible areas and to enhance nanoparticle internalization and drug release. Our proposed nanosystem shows many of the suitable characteristics for ideal biomedical destined nanomotors, such as rapid autonomous motion, versatility, and stimuli-responsive controlled drug release.The authors want to thank the Spanish Government for RTI2018-100910-B-C41 (MCIU/AEI/FEDER, UE) and CTQ2017-87954-P projects and the Generalitat Valenciana for support by project PROMETEO/2018/024. P.D. thanks the Spanish government for her Juan de la Cierva postdoctoral fellowship. E.L.-S. thanks MINECO for her FPU fellowship. A.E. is also grateful for her Ph.D. grant by the Generalitat Valenciana.Diez-Sånchez, P.; Lucena-Sånchez, E.; Escudero-Noguera, A.; Llopis-Lorente, A.; Villalonga, R.; Martínez-Måñez, R. (2021). Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano. 15(3):4467-4480. https://doi.org/10.1021/acsnano.0c084044467448015

    A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters

    Get PDF
    Background: Circadian theories for major depressive disorder have suggested that the rhythm of the circadian pacemaker is misaligned. Stable phase relationships between internal rhythms, such as temperature and rest/activity, and the external day-night cycle, are considered to be crucial for adapting to life in the external environmental. Therefore, the relationship and possible alterations among (i) light exposure, (ii) activity rhythm, and (iii) temperature rhythm could be important factors in clinical depression. This study aimed to investigate the rhythmic alterations in depression and evaluate the ability of chronobiological parameters to discriminate between healthy subjects and depressed patients. Methods: Thirty female subjects, including healthy subjects, depressed patients in the first episode, and major recurrent depression patients. Symptoms were assessed using Hamilton Depression Scale, Beck Depression Inventory and Montgomery-Äsberg Scale. Motor activity, temperature, and light values were determined for 7 days by actigraph, and circadian rhythms were calculated. Results: Depressed groups showed a lower amplitude in the circadian rhythm of activity and light exposure, but a higher amplitude in the rhythm of peripheral temperature. The correlation between temperature and activity values was different in the day and night among the control and depressed groups. For the same level of activity, depressed patients had lowest temperature values during the day. The amplitudes of temperature and activity were the highest discriminant parameters. Conclusions: These results indicate that the study of rhythms is useful for diagnosis and therapy for depressive mood disorders

    Neonatal overfeeding during lactation rapidly and permanently misaligns the hepatic circadian rhythm and programmes adult NAFLD

    Get PDF
    Childhood obesity is a strong risk factor for adult obesity, type 2 diabetes, and cardiovascular disease. The mechanisms that link early adiposity with late-onset chronic diseases are poorly characterised. We developed a mouse model of early adiposity through litter size reduction. Mice reared in small litters (SLs) developed obesity, insulin resistance, and hepatic steatosis during adulthood. The liver played a major role in the development of the disease. Objective: To gain insight into the molecular mechanisms that link early development and childhood obesity with adult hepatic steatosis and insulin resistance. Methods: We analysed the hepatic transcriptome (Affymetrix) of control and SL mice to uncover potential pathways involved in the long-term programming of disease in our model. Results: The circadian rhythm was the most significantly deregulated Gene Ontology term in the liver of adult SL mice. Several core clock genes, such as period 1e3 and cryptochrome 1e2, were altered in two-week-old SL mice and remained altered throughout their life course until they reached 4e6 months of age. Defective circadian rhythm was restricted to the periphery since the expression of clock genes in the hypothalamus, the central pacemaker, was normal. The period-cryptochrome genes were primarily entrained by dietary signals. Hence, restricting food availability during the light cycle only uncoupled the central rhythm from the peripheral and completely normalised hepatic triglyceride content in adult SL mice. This effect was accompanied by better re-alignment of the hepatic period genes, suggesting that they might have played a causal role in mediating hepatic steatosis in the adult SL mice. Functional downregulation of Per2 in hepatocytes in vitro confirmed that the period genes regulated lipid-related genes in part through peroxisome proliferator-activated receptor alpha (Ppara). Conclusions: The hepatic circadian rhythm matures during early development, from birth to postnatal day 30. Hence, nutritional challenges during early life may misalign the hepatic circadian rhythm and secondarily lead to metabolic derangements. Specific time-restricted feeding interventions improve metabolic health in the context of childhood obesity by partially re-aligning the peripheral circadian rhythm

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Melatonin administration modifies circadian motor activity under constant light depending on the lighting conditions during suckling

    Get PDF
    Early lighting conditions have been described to produce long-term effects on circadian behavior, which may also influence the response to agents acting on the circadian system. It has been suggested that melatonin (MEL) may act on the circadian pacemaker and as a scavenger of reactive oxygen and nitrogen species. Here, we studied the oxidative and behavioral changes caused by prolonged exposure to constant light (LL) in groups of rats that differed in MEL administration and in lighting conditions during suckling. The rats were exposed to either a light–dark cycle (LD) or LL. At 40 days old, rats were treated for 2 weeks with a daily subcutaneous injection of MEL (10 mg/kg body weight) or a vehicle at activity onset. Blood samples were taken before and after treatment, to determine catalase (CAT) activity and nitrite level in plasma. As expected, LL-reared rats showed a more stable motor activity circadian rhythm than LD rats. MEL treatment produced more reactivity in LD- than in LL rats, and was also able to alter the phase of the rhythm in LD rats. There were no significant differences in nitrite levels or CAT activity between the groups, although both variables increased with time. Finally, we also tested depressive signs by means of sucrose consumption, and anhedonia was found in LD males treated with MEL. The results suggest that the lighting conditions in early infancy are important for the long-term functionality of the circadian system, including rhythm manifestation, responses to MEL and mood alterations.Fil: Carpentieri, Agata Rita. Universidad de Barcelona. Facultad de Farmacia; España. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. Universidad Nacional de CĂłrdoba; ArgentinaFil: Oliva, Clara. Universidad de Barcelona. Facultad de Farmacia; EspañaFil: Diez Noguera, Antoni. Universidad de Barcelona. Facultad de Farmacia; EspañaFil: Cambras, Trinitat. Universidad de Barcelona. Facultad de Farmacia; Españ

    A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters

    Get PDF
    Background: Circadian theories for major depressive disorder have suggested that the rhythm of the circadian pacemaker is misaligned. Stable phase relationships between internal rhythms, such as temperature and rest/activity, and the external day-night cycle, are considered to be crucial for adapting to life in the external environmental. Therefore, the relationship and possible alterations among (i) light exposure, (ii) activity rhythm, and (iii) temperature rhythm could be important factors in clinical depression. This study aimed to investigate the rhythmic alterations in depression and evaluate the ability of chronobiological parameters to discriminate between healthy subjects and depressed patients. Methods: Thirty female subjects, including healthy subjects, depressed patients in the first episode, and major recurrent depression patients. Symptoms were assessed using Hamilton Depression Scale, Beck Depression Inventory and Montgomery-Äsberg Scale. Motor activity, temperature, and light values were determined for 7 days by actigraph, and circadian rhythms were calculated. Results: Depressed groups showed a lower amplitude in the circadian rhythm of activity and light exposure, but a higher amplitude in the rhythm of peripheral temperature. The correlation between temperature and activity values was different in the day and night among the control and depressed groups. For the same level of activity, depressed patients had lowest temperature values during the day. The amplitudes of temperature and activity were the highest discriminant parameters. Conclusions: These results indicate that the study of rhythms is useful for diagnosis and therapy for depressive mood disorders

    Altered Circadian Rhythm and Metabolic Gene Profile in Rats Subjected to Advanced Light Phase Shifts

    No full text
    <div><p>The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT), brown adipose tissue (BAT) and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.</p></div
    corecore