333 research outputs found

    Gaia astrometric science performance - post-launch predictions

    Full text link
    The standard errors of the end-of-mission Gaia astrometry have been re-assessed after conclusion of the in-orbit commissioning phase of the mission. An analytical relation is provided for the parallax standard error as function of Gaia G magnitude (and V-I colour) which supersedes the pre-launch relation provided in de Bruijne (2012).Comment: To be published in the proceedings of the GREAT-ITN conference "The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", 1-5 December 2014, University of Barcelona, Spain, EAS Publications Series, eds Nicholas Walton, Francesca Figueras, and Caroline Soubira

    The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS

    Full text link
    We use the Gaia-TGAS data to compare the transverse velocities in Galactic longitude (coming from proper motions and parallaxes) in the Milky Way disk for negative and positive longitudes as a function of distance. The transverse velocities are strongly asymmetric and deviate significantly from the expectations for an axisymmetric Galaxy. The value and sign of the asymmetry changes at spatial scales of several tens of degrees in Galactic longitude and about 0.5 kpc in distance. The asymmetry is statistically significant at 95% confidence level for 57% of the region probed, which extends up to ~1.2 kpc. A percentage of 24% of the region studied shows absolute differences at this confidence level larger than 5 km/s and 7% larger than 10 km/s. The asymmetry pattern shows mild variations in the vertical direction and with stellar type. A first qualitative comparison with spiral arm models indicates that the arms are unlikely to be the main source of the asymmetry. We briefly discuss alternative origins. This is the first time that global all-sky asymmetries are detected in the Milky Way kinematics, beyond the local neighbourhood, and with a purely astrometric sample.Comment: Accepted for publication in A&A Letter

    Understanding the spiral structure of the Milky Way using the local kinematic groups

    Get PDF
    We study the spiral arm influence on the solar neighbourhood stellar kinematics. As the nature of the Milky Way (MW) spiral arms is not completely determined, we study two models: the Tight-Winding Approximation (TWA) model, which represents a local approximation, and a model with self-consistent material arms named PERLAS. This is a mass distribution with more abrupt gravitational forces. We perform test particle simulations after tuning the two models to the observational range for the MW spiral arm properties. We explore the effects of the arm properties and find that a significant region of the allowed parameter space favours the appearance of kinematic groups. The velocity distribution is mostly sensitive to the relative spiral arm phase and pattern speed. In all cases the arms induce strong kinematic imprints for pattern speeds around 17 km/s/kpc (close to the 4:1 inner resonance) but no substructure is induced close to corotation. The groups change significantly if one moves only ~0.6 kpc in galactocentric radius, but ~2 kpc in azimuth. The appearance time of each group is different, ranging from 0 to more than 1 Gyr. Recent spiral arms can produce strong kinematic structures. The stellar response to the two potential models is significantly different near the Sun, both in density and kinematics. The PERLAS model triggers more substructure for a larger range of pattern speed values. The kinematic groups can be used to reduce the current uncertainty about the MW spiral structure and to test whether this follows the TWA. However, groups such as the observed ones in the solar vicinity can be reproduced by different parameter combinations. Data from velocity distributions at larger distances are needed for a definitive constraint.Comment: 18 pages, 21 figures, 4 tables; acccepted for publication in MNRA

    Riding the kinematic waves in the Milky Way disk with Gaia

    Full text link
    Gaia DR2 has delivered full-sky 6-D measurements for millions of stars, and the quest to understand the dynamics of our Galaxy has entered a new phase. Our aim is to reveal and characterize the kinematic sub-structure of the different Galactic neighbourhoods, to form a picture of their spatial evolution that can be used to infer the Galactic potential, its evolution and its components. We take ~5 million stars in the Galactic disk from the Gaia DR2 catalogue and build the velocity distribution of many different Galactic Neighbourhoods distributed along 5 kpc in Galactic radius and azimuth. We decompose their distribution of stars in the V_R-V_phi plane with the wavelet transformation and asses the statistical significance of the structures found. We detect many kinematic sub-structures (arches and more rounded groups) that diminish their azimuthal velocity as a function of Galactic radius in a continuous way, connecting volumes up to 3 kpc apart in some cases. The decrease rate is, on average, of ~23 km/s/kpc. In azimuth, the kinematic sub-structures present much smaller variations. We also observe a duality in their behaviour: some conserve their vertical angular momentum with radius (e.g., Hercules), while some seem to have nearly constant kinetic energy (e.g., Sirius). These two trends are consistent with the approximate predictions of resonances and of phase mixing, respectively. Besides, the overall spatial evolution of Hercules is consistent with being related to the Outer Lindblad Resonance of the Bar. We also detect structures without apparent counterpart in the vicinity of the Sun. The various trends observed and their continuity with radius and azimuth allows for future work to deeply explore the parameter space of the models. Also, the characterization of extrasolar moving groups opens the opportunity to expand our understanding of the Galaxy beyond the Solar Neighbourhood.Comment: 16 pages. Submitted to Astronomy and Astrophysics on 24th of May, 2018. Related on-line material available (see Appendix B

    The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

    Get PDF
    We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes (ϖ\varpi), proper motions (ÎŒ\mu) and radial velocities (VrV_\mathrm{r}). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disk, we find that this ratio is above 0.5 in the region given by: ϖ≄5\varpi \geq 5mas, 4≀Ό≀64 \leq \mu \leq 6masyr−1^{-1}, and −2≀Vr≀0-2\leq V_\mathrm{r} \leq 0kms−1^{-1}. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow up observations [Abridged].Comment: 13 pages, 7 figures. Accepted for publication in MNRA

    Kinematic groups across the MW disc: insights from models and from the RAVE catalogue

    Get PDF
    With the advent of the Gaia data, the unprecedented kinematic census of great part of the Milky Way disc will allow us to characterise the local kinematic groups and new groups in different disc neighbourhoods. First, we show here that the models predict a stellar kinematic response to the spiral arms and bar strongly dependent on disc position. For example, we find that the kinematic groups induced by the spiral arm models change significantly if one moves only ~ 0.6 kpc in galactocentric radius, but ~ 2 kpc in azimuth. There are more and stronger groups as one approaches the spiral arms. Depending on the spiral pattern speed, the kinematic imprints are more intense in nearby vicinities or far from the Sun. Secondly, we present a preliminary study of the kinematic groups observed by RAVE. This sample will allow us, for the first time, to study the dependence on Galactic position of the (thin and thick) disc moving groups. In the solar neighbourhood, we find the same kinematics groups as detected in previous surveys, but now with better statistics and over a larger spatial volume around the Sun. This indicates that these structures are indeed large scale kinematic features.Comment: 4 pages, 3 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (April 17-22, 2011), C. Reyle, A. Robin, M. Schultheis (eds.

    BGM FASt: Besan\c{c}on Galaxy Model for Big Data. Simultaneous inference of the IMF, SFH and density in the Solar Neighbourhood

    Get PDF
    We develop a new theoretical framework to generate Besan\c{c}on Galaxy Model fast approximate simulations (BGM FASt) to address fundamental questions of the Galactic structure and evolution performing multi-parameter inference. As a first application of our strategy we simultaneously infer the IMF, the star formation history and the stellar mass density in the Solar Neighbourhood. The BGM FASt strategy is based on a reweighing scheme, that uses a specific pre-sampled simulation, and on the assumption that the distribution function of the generated stars in the Galaxy can be described by an analytical expression. To validate BGM FASt we execute a set of tests. Finally, we use BGM FASt with an approximate Bayesian computation algorithm to obtain the posterior PDF of the inferred parameters, by comparing synthetic versus Tycho-2 colour-magnitude diagrams. Results: The validation shows a very good agreement between BGM FASt and the standard BGM, with BGM FASt being ≈104\approx 10^4 times faster. By analysing Tycho-2 data we obtain a thin disc star formation history decreasing in time and a present rate of 1.2±0.2M⊙/yr1.2 \pm 0.2 M_\odot/yr. The resulting total stellar mass density in the Solar Neighbourhood is 0.051−0.005+0.002M⊙/pc30.051_{-0.005}^{+0.002} M_\odot/pc^3 and the local dark matter density is 0.012±0.001M⊙/pc30.012 \pm 0.001 M_\odot/pc^3. For the composite IMF we obtain a slope of α2=2.1−0.3+0.1\alpha_2={2.1}_{-0.3}^{+0.1} in the mass range between 0.5M⊙0.5 M_\odot and 1.53M⊙1.53M_\odot. The results of the slope at the high mass range are trustable up to 4M⊙4M_\odot and highly depend on the choice of the extinction map (obtaining α3=2.9−0.2+0.2\alpha_3={2.9}_{-0.2}^{+0.2} and α3=3.7−0.2+0.2\alpha_3={3.7}_{-0.2}^{+0.2} respectively, for two different extinction maps). Systematic uncertainties are not included. Conclusions: The good performance of BGM FASt demonstrates that it is a very valuable tool to perform multi-parameter inference using Gaia data releases.Comment: Accepted for publication by A&A. 30 pages (23 pages of main body and 7 pages of Appendixes) , 15 figures and 4 table

    The imprints of the Galactic Bar on the Thick Disk with RAVE

    Get PDF
    We study the kinematics of a local sample of stars, located within a cylinder of 500 pc radius centered on the Sun, in the RAVE data set. We find clear asymmetries in the v R v∞ velocity distributions of thin and thick disk stars: there are more stars moving radially outward for low azimuthal velocities and more radially inward for high azimuthal velocities. Such asymmetries have been previously reported for the thin disk as being due to the Galactic bar, but this is the first time that the same type of structures are seen in the thick disk. Our findings imply that the velocities of thick-disk stars should no longer be described by Schwarzschilds, multivariate Gaussian or purely axisymmetric distributions. Furthermore, the nature of previously reported substructures in the thick disk needs to be revisited as these could be associated with dynamical resonances rather than to accretion events. It is clear that dynamical models of the Galaxy must fit the 3D velocity distributions of the disks, rather than the projected 1D, if we are to understand the Galaxy fully

    Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy

    Get PDF
    Non-axisymmetries in the Galactic potential (spiral arms and bar) induce kinematic groups such as the Hercules stream. Assuming that Hercules is caused by the effects of the outer Lindblad resonance of the Galactic bar, we model analytically its properties as a function of position in the Galaxy and its dependence on the bar's pattern speed and orientation. Using data from the RAVE survey we find that the azimuthal velocity of the Hercules structure decreases as a function of Galactocentric radius, in a manner consistent with our analytical model. This allows us to obtain new estimates of the parameters of the Milky Way's bar. The combined likelihood function of the bar's pattern speed and angle has its maximum for a pattern speed of Omega(b) = (1.89 +/- 0.08) x Omega(0), where Omega(0) is the local circular frequency. Assuming a solar radius of 8.05 kpc and a local circular velocity of 238 km s(-1), this corresponds to Omega(b) = 56 +/- 2km s(-1) kpc(-1). On the other hand, the bar's orientation phi(b) cannot be constrained with the available data. In fact, the likelihood function shows that a tight correlation exists between the pattern speed and the orientation, implying that a better description of our best fit results is given by the linear relation Omega(b)/Omega(0) = 1.91+0.0044 (phi(b)(deg) - 48), with standard deviation of 0.02. For example, for an angle of phi(b) = 30 deg the pattern speed is 54.0 +/- 0.5 km s(-1) kpc(-1). These results are not very sensitive to the other Galactic parameters such as the circular velocity curve or the peculiar motion of the Sun, and are robust to biases in distance

    Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants

    Get PDF
    Extensive surveys of star-forming regions with Spitzer have revealed populations of disk-bearing young stellar objects. These have provided crucial constraints, such as the timescale of dispersal of protoplanetary disks, obtained by carefully combining infrared data with spectroscopic or X-ray data. While observations in various regions agree with the general trend of decreasing disk fraction with age, the Lupus V and VI regions appeared to have been at odds, having an extremely low disk fraction. Here we show, using the recent Gaia data release 2 (DR2), that these extremely low disk fractions are actually due to a very high contamination by background giants. Out of the 83 candidate young stellar objects (YSOs) in these clouds observed by Gaia, only five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and have similar proper motions to other members in this star-forming complex. Of these five targets, four have optically thick (Class II) disks. On the one hand, this result resolves the conundrum of the puzzling low disk fraction in these clouds, while, on the other hand, it further clarifies the need to confirm the Spitzer selected diskless population with other tracers, especially in regions at low galactic latitude like Lupus V and VI. The use of Gaia astrometry is now an independent and reliable way to further assess the membership of candidate YSOs in these, and potentially other, star-forming regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter
    • 

    corecore