14 research outputs found

    United we stand

    No full text

    Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo

    No full text
    Summary: Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche. Although these cells are still quiescent, biochemical changes certainly occur during the isolation process. Here, we analyze the transcriptome of MuSCs in vivo utilizing MuSC-specific labeling of RNA. Notably, labeling transcripts during the isolation procedure revealed very active transcription of specific subsets of genes. However, using the transcription inhibitor α-amanitin, we show that the ex vivo transcriptome remains largely reflective of the in vivo transcriptome. Together, these data provide perspective on the molecular regulation of the quiescent state at the transcriptional level, demonstrate the utility of these tools for probing transcriptional dynamics in vivo, and provide an invaluable resource for understanding stem cell state transitions. : van Velthoven et al. use metabolic labeling of RNA to examine the quiescent transcriptome of MuSCs in vivo and during early activation. They find dynamic regulation of specific subsets of transcripts in quiescent and activating MuSCs, and they demonstrate the utility of these tools for probing transcriptional dynamics in vivo. Keywords: satellite cells, quiescence, nascent transcriptio

    RNA splicing programs define tissue compartments and cell types at single-cell resolution

    Get PDF
    The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in \u3e110K cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically
    corecore