17 research outputs found

    Plataforma de orientación para la movilidad académica. Diseño de experiencia de usuario

    Full text link
    [ES] Este trabajo de final de grado recoge el proceso de desarrollo de POMA (Plataforma de Orientación para la Movilidad Académica), un portal web de orientación para el intercambio académico dirigido a los alumnos de la Facultat de Belles Arts de la UPV. Partiendo de un estudio de las prestaciones ofrecidas por la oficina de Relaciones Internacionales, se ha desarrollado un proceso de investigación centrado en el usuario con el fin de conocer, comprender y proyectar el perfil del alumno al que se dirige este servicio. Los resultados obtenidos han permitido realizar una propuesta adaptada a los intereses y necesidades reales de los estudiantes. Para el diseño de esta plataforma web se ha desarrollado una identidad visual propia que se ha aplicado tanto a la interfaz como a los diferentes formatos de comunicación de POMA. Se ha establecido un lenguaje propio que permite que todos los elementos que componen este proyecto se relacionen de forma homogénea y sean reconocibles como marca. Adicionalmente se ha planteado una campaña de promoción en redes sociales que asegurará una difusión optima tanto en su lanzamiento como en el uso diario de la plataforma. En esta memoria se expone el proceso de trabajo seguido del desarrollo del sitio web, desde una primera fase de análisis a la ideación y aplicación del diseño. Se estructura de acuerdo a las necesidades del proyecto manteniendo una perspectiva profesional orientada a la implementación real de la propuesta. Finalmente se valoran los resultados obtenidos y se plantea su futura continuación.[EN] This final degree project includes the development process of POMA (Orientation Platform for Academic Mobility), a website of guidance for the outgoing academic mobility of the students of the Faculty of Fine Arts of the UPV. Based on a study of the services offered by the International Relations Office, a research process focused on the user has been developed in order to know, understand and project the profile of the student to whom this service is directed. The results obtained have allowed to make a proposal adapted to the interests and real needs of the students. For the design of this web platform, a specific visual identity has been developed that has been applied both to the interface and to the different communication formats of POMA. An own language has been established that allows all the elements that make up this project to be related in a homogeneous way and to be recognizable as a brand. In addition, a promotion campaign on social networks has been proposed, which will ensure optimal dissemination both in its launch and in the daily use of the platform. This report describes the work process followed in the development of the website from a first phase of analysis to the ideation and application of the design. It is structured according to the needs of the project maintaining a professional perspective oriented to the real implementation of the proposal. Finally, the results obtained are valued and its future continuation is considered.Antón Bolaños, S. (2018). PLATAFORMA DE ORIENTACIÓN PARA LA MOVILIDAD ACADÉMICA. DISEÑO DE EXPERIENCIA DE USUARIO. http://hdl.handle.net/10251/110218TFG

    Prenatal thalamic waves regulate cortical area size prior to sensory processing

    Get PDF
    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.V.M.-J. holds a ‘Severo Ochoa’ PhD fellowship and N.A.-B. a FPI fellowship, both from the MINECO. C.M. held a JAE-Predoc fellowship from the CSIC, and H.G. held postdoctoral fellowships from the Swedish Research council and Brain Foundation. Supported by the Swiss National Science Foundation (31003A_149573) and the Novartis Research Foundation to F.M.R., the JSPS KAKENHI (JP16H06459) to T.I. and by the Spanish MINECO BFU2012-34298 and BFU2015-64432-R, and two European Commission Grants ERC-2009-StG-20081210 and ERC-2014-CoG-647012 to G.L.-B. G.L.-B. is an EMBO YIP Investigator and a FENS-Kavli scholar.Peer reviewe

    Role of thalamic input in the development of sensory cortical maps

    No full text
    Sensory systems are represented in the primary sensory areas of the cerebral cortex by anatomical and functional maps, as the whisker pad representation in the barrel field of S1 in rodents. The compartmentalization of the cerebral cortex into specialized sensory-modality areas is primarily defined by intrinsic molecular determinants. Many intrinsic and extrinsic factors have been proposed to shape sensory maps during early development. Neuronal activity from the sensory periphery is assumed to drive topographic organization of sensory cortex, but thalamocortical columns, a key organizational feature of the cortex, emerge even without peripheral sensory input. Thalamocortical axons (TCA) form a precise topographical projection that conveys the majority of sensory and motor information to the cerebral cortex. This connectivity is formed prenatally and is becoming increasingly clearer that TCA influence several aspects of cortical development, such as cortical areal specification or sensory maps tuning. Previously, we reported that embryonic thalamic activity regulates the size of sensory cortical areas in mice. Now, this thesis demonstrates that thalamic waves are not only essential in the context of plasticity after sensory input loss but we provide the first causal link between intrinsic thalamic activity in the embryo and cortical map formation. In this work, we identify that the fundamental columnar organization of the thalamocortical somatotopic map already exists in the mouse embryo. Blocking thalamic calcium waves results in hyperexcitability of cortical circuits, columnar organization fails, barrels never emerge, and the somatosensory map loses its point-to-point spatial and functional organization. Our results reveal that a self-organized, intrinsicprotomap in the embryonic thalamus drives functional assembly of thalamocortical sensory circuits. Los sistemas sensoriales se encuentran representados en las cortezas sensoriales primarias del cerebro en forma de mapas anatómicos y funcionales. Tanto factores intrínsecos como extrínsecos han sido propuestos como principales moduladores del desarrollo de las áreas y mapas sensoriales. La actividad neuronal que proviene de los órganos periféricos se considera la principal inductora de la organización topográfica existente en las cortezas sensoriales; sin embargo, las columnas talamocorticales, emergen sin necesidad de input sensorial periférico. Los axones talamocorticales forman una proyección topográfica precisa que transmite la mayor parte de la información sensorial y motora que recibe la corteza. Este circuito se forma prenatalmente y por ello podría estar influyendo diversos aspectos del desarrollo de la corteza cerebral, entre otros la especificación de las áreas corticales y la generación de los mapas sensoriales antes del nacimiento. Previamente, hemos mostrado como la actividad del tálamo prenatal modula el tamaño de las áreas sensoriales de la corteza. En este trabajo mostramos que el patrón prenatal de la actividad talámica es esencial no sólo como mecanismo homeostático para regular el tamaño de las diferentes cortezas sensoriales, sino también juega una función importante en la formación de los mapas sensoriales. Concretamente, hemos determinado que la organización columnar del mapa somatosensorial existe prenatalmente. Mostramos por primera vez una conexión causal entre la actividad talámica intrínseca en el embrión y la formación del mapa somatosensorial. Cuando modificamos la actividad embrionaria talámica de sincrónica a asincrónica, los circuitos corticales se vuelven hiperexcitables, la organización columnar no se genera, los barriles no se forman y el mapa somatosensorial pierde su organización punto a punto, tanto a nivel anatómico como funcional. Nuestros resultados revelan que el protomapa intrínseco del tálamo controla el ensamblaje anatómico y funcional del circuito talamocortical

    Developmental interactions between thalamus and cortex: a true love reciprocal story

    No full text
    The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.This work was supported by the Spanish MINECO BFU2015-64432-R, the PROMETEO/2017/149, the Spanish National Research Agency (Severo Ochoa Centre of Excellence Accreditation SEV-2013-0317) and the European Commission ERC-2014-CoG-647012. G.L-B. is an EMBO Young Investigator and a FENS-Kavli Scholar.Peer reviewe

    Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice

    No full text
    The mammalian brain’s somatosensory cortex is a topographic map of the body’s sensory experience. In mice, cortical barrels reflect whisker input. We asked whether these cortical structures require sensory input to develop or are driven by intrinsic activity. Thalamocortical columns, connecting the thalamus to the cortex, emerge before sensory input and concur with calcium waves in the embryonic thalamus. We show that the columnar organization of the thalamocortical somatotopic map exists in the mouse embryo before sensory input, thus linking spontaneous embryonic thalamic activity to somatosensory map formation. Without thalamic calcium waves, cortical circuits become hyperexcitable, columnar and barrel organization does not emerge, and the somatosensory map lacks anatomical and functional structure. Thus, a self-organized protomap in the embryonic thalamus drives the functional assembly of murine thalamocortical sensory circuits.This work was supported by grants from the European Research Council (ERC-2014-CoG-647012) and the Spanish Ministry of Science, Innovation and Universities (BFU2015-64432-R and Severo Ochoa grant SEV2017-0723). N.A.-B. held an FPI fellowship from the MINECO. H.G. held postdoctoral fellowships from the Swedish Research Council and the Swedish Brain Foundation.Peer reviewe

    Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development.

    No full text
    The striatum is a large brain nucleus with an important role in the control of movement and emotions. Medium spiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains poorly understood. Here, we implicate the Wnt binding receptor Frizzled3 in several uncharacterized aspects of MSN pathway formation [i.e., anterior-posterior guidance of MSN axons in the striatum and their subsequent growth into the globus pallidus (GP), an important (intermediate) target]. In Frizzled3 knock-out mice, MSN axons fail to extend along the anterior-posterior axis of the striatum, and many do not reach the GP. Wnt5a acts as an attractant for MSN axons in vitro, is expressed in a posterior high, anterior low gradient in the striatum, and Wnt5a knock-out mice phenocopy striatal anterior-posterior defects observed in Frizzled3 mutants. This suggests that Wnt5a controls anterior-posterior guidance of MSN axons through Frizzled3. Axons that reach the GP in Frizzled3 knock-out mice fail to enter this structure. Surprisingly, entry of MSN axons into the GP non-cell-autonomously requires Frizzled3, and our data suggest that GP entry may be contingent on the correct positioning of "corridor" guidepost cells for thalamocortical axons by Frizzled3. Together, these data dissect MSN pathway development and reveal (non)cell-autonomous roles for Frizzled3 in MSN axon guidance. Further, they are the first to identify a gene that provides anterior-posterior axon guidance in a large brain nucleus and link Frizzled3 to corridor cell development
    corecore