807 research outputs found

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    International trends in clinical characteristics and oral anticoagulation treatment for patients with atrial fibrillation: Results from the GARFIELD-AF, ORBIT-AF I, and ORBIT-AF II registries.

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. We aimed to provide comprehensive data on international patterns of AF stroke prevention treatment. METHODS: Demographics, comorbidities, and stroke risk of the patients in the GARFIELD-AF (n=51,270), ORBIT-AF I (n=10,132), and ORBIT-AF II (n=11,602) registries were compared (overall N=73,004 from 35 countries). Stroke prevention therapies were assessed among patients with new-onset AF (≤6 weeks). RESULTS: Patients from GARFIELD-AF were less likely to be white (63% vs 89% for ORBIT-AF I and 86% for ORBIT-AF II) or have coronary artery disease (19% vs 36% and 27%), but had similar stroke risk (85% CHA2DS2-VASc ≥2 vs 91% and 85%) and lower bleeding risk (11% with HAS-BLED ≥3 vs 24% and 15%). Oral anticoagulant use was 46% and 57% for patients with a CHA2DS2-VASc=0 and 69% and 87% for CHA2DS2-VASc ≥2 in GARFIELD-AF and ORBIT-AF II, respectively, but with substantial geographic heterogeneity in use of oral anticoagulant (range: 31%-93% [GARFIELD-AF] and 66%-100% [ORBIT-AF II]). Among patients with new-onset AF, non-vitamin K antagonist oral anticoagulant use increased over time to 43% in 2016 for GARFIELD-AF and 71% for ORBIT-AF II, whereas use of antiplatelet monotherapy decreased from 36% to 17% (GARFIELD-AF) and 18% to 8% (ORBIT-AF I and II). CONCLUSIONS: Among new-onset AF patients, non-vitamin K antagonist oral anticoagulant use has increased and antiplatelet monotherapy has decreased. However, anticoagulation is used frequently in low-risk patients and inconsistently in those at high risk of stroke. Significant geographic variability in anticoagulation persists and represents an opportunity for improvement

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    The High-Resolution Coronal Imager, Flight 2.1

    Get PDF
    The third flight of the High-Resolution Coronal Imager (Hi-C 2.1) occurred on May 29, 2018; the Sounding Rocket was launched from White Sands Missile Range in New Mexico. The instrument has been modified from its original configuration (Hi-C 1) to observe the solar corona in a passband that peaks near 172 Å, and uses a new, custom-built low-noise camera. The instrument targeted Active Region 12712, and captured 78 images at a cadence of 4.4 s (18:56:22 – 19:01:57 UT; 5 min and 35 s observing time). The image spatial resolution varies due to quasi-periodic motion blur from the rocket; sharp images contain resolved features of at least 0.47 arcsec. There are coordinated observations from multiple ground- and space-based telescopes providing an unprecedented opportunity to observe the mass and energy coupling between the chromosphere and the corona. Details of the instrument and the data set are presented in this paper

    Lipidomics: A Tool for Studies of Atherosclerosis

    Get PDF
    Lipids, abundant constituents of both the vascular plaque and lipoproteins, play a pivotal role in atherosclerosis. Mass spectrometry-based analysis of lipids, called lipidomics, presents a number of opportunities not only for understanding the cellular processes in health and disease but also in enabling personalized medicine. Lipidomics in its most advanced form is able to quantify hundreds of different molecular lipid species with various structural and functional roles. Unraveling this complexity will improve our understanding of diseases such as atherosclerosis at a level of detail not attainable with classical analytical methods. Improved patient selection, biomarkers for gauging treatment efficacy and safety, and translational models will be facilitated by the lipidomic deliverables. Importantly, lipid-based biomarkers and targets should lead the way as we progress toward more specialized therapeutics

    The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee

    Get PDF
    Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms

    Get PDF
    Background: High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings: This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance: These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography

    Ethnic minority disparities in progression and mortality of pre-dialysis chronic kidney disease : a systematic scoping review

    Get PDF
    Background: There are a growing number of studies on ethnic differences in progression and mortality for pre-dialysis chronic kidney disease (CKD), but this literature has yet to be synthesised, particularly for studies on mortality. Methods: This scoping review synthesized existing literature on ethnic differences in progression and mortality for adults with pre-dialysis CKD, explored factors contributing to these differences, and identified gaps in the literature. A comprehensive search strategy using search terms for ethnicity and CKD was taken to identify potentially relevant studies. Nine databases were searched from 1992 to June 2017, with an updated search in February 2020. Results: 8059 articles were identified and screened. Fifty-five studies (2 systematic review, 7 non-systematic reviews, and 46 individual studies) were included in this review. Most were US studies and compared African-American/Afro-Caribbean and Caucasian populations, and fewer studies assessed outcomes for Hispanics and Asians. Most studies reported higher risk of CKD progression in Afro-Caribbean/African-Americans, Hispanics, and Asians, lower risk of mortality for Asians, and mixed findings on risk of mortality for Afro-Caribbean/African-Americans and Hispanics, compared to Caucasians. Biological factors such as hypertension, diabetes, and cardiovascular disease contributed to increased risk of progression for ethnic minorities but did not increase risk of mortality in these groups. Conclusions: Higher rates of renal replacement therapy among ethnic minorities may be partly due to increased risk of progression and reduced mortality in these groups. The review identifies gaps in the literature and highlights a need for a more structured approach by researchers that would allow higher confidence in single studies and better harmonization of data across studies to advance our understanding of CKD progression and mortality
    corecore