244 research outputs found

    Young "Dipper" Stars in Upper Sco and ρ\rho Oph Observed by K2

    Get PDF
    We present ten young (\lesssim10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show \sim10-20 dips in flux over the 80-day observing campaign with durations of \sim0.5-2 days and depths of up to \sim40%. These stars are all members of the ρ\rho Ophiuchus (\sim1 Myr) or Upper Scorpius (\sim10 Myr) star-forming regions. To investigate the nature of these "dippers" we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and Hα\alpha emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within \sim10 stellar radii in most cases; however, the sub-mm observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.Comment: Accepted to ApJ, 19 pages, 10 figure

    Wound irrigation does not affect healthrelated quality of life after open fractures: Results of a randomized controlled trial

    Get PDF
    © 2018 Sprague et al. Aims The Fluid Lavage in Open Fracture Wounds (FLOW) trial was a multicentre, blinded, randomized controlled trial that used a 2 3 factorial design to evaluate the effect of irrigation solution (soap versus normal saline) and irrigation pressure (very low versus low versus high) on health-related quality of life (HRQL) in patients with open fractures. In this study, we used this dataset to ascertain whether these factors affect whether HRQL returns to pre-injury levels at 12-months post-injury. Patients and Methods Participants completed the Short Form-12 (SF-12) and the EuroQol-5 Dimensions (EQ-5D) at baseline (pre-injury recall), at two and six weeks, and at three, six, nine and 12-months postfracture. We calculated the Physical Component Score (PCS) and the Mental Component Score (MCS) of the SF-12 and the EQ-5D utility score, conducted an analysis using a multilevel generalized linear model, and compared differences between the baseline and 12- month scores. Results We found no clinically important differences between irrigating solutions or pressures for the SF-12 PCS, SF-12 MCS and EQ-5D. Irrespective of treatment, participants had not returned to their pre-injury function at 12-months for any of the three outcomes (p \u3c 0.001). Conclusion Neither the composition of the irrigation solution nor irrigation pressure applied had an effect on HRQL. Irrespective of treatment, patients had not returned to their pre-injury HRQL at 12 months post-fracture

    Testing external photoevaporation in the σ\sigma-Orionis cluster with spectroscopy and disk mass measurements

    Full text link
    The evolution of protoplanetary disks is regulated by an interplay of several processes, either internal to the system or related to the environment. As most of the stars and planets have formed in massive stellar clusters, studying the effects of UV radiation on disk evolution is of paramount importance. Here we test the impact of external photoevaporation on the evolution of disks in the σ\sigma Orionis cluster by conducting the first combined large-scale UV to IR spectroscopic and mm-continuum survey of this region. We study a sample of 50 targets located at increasing distances from the central, OB system σ\sigma Ori. We combine new VLT/X-Shooter spectra with new and previously published ALMA measurements of disk dust and gas fluxes and masses. We confirm the previously found decrease of MdustM_{\rm dust} in the inner \sim0.5 pc of the cluster. This is particularly evident when considering the disks around the more massive stars (\ge 0.4 MM_{\odot}), where those located in the inner part (<< 0.5 pc) have MdustM_{\rm dust} about an order of magnitude lower than the more distant ones. About half of the sample is located in the region of the M˙acc\dot{M}_{\rm acc} vs MdiskM_{\rm disk} expected by models of external photoevaporation, namely showing shorter disk lifetimes. These are observed for all targets with projected separation from σ\sigma Ori << 0.5 pc, proving that the presence of a massive stellar system affects disk evolution. External photoevaporation is a viable mechanism to explain the observed shorter disk lifetimes and lower MdustM_{\rm dust} in the inner \sim0.5 pc of the cluster. Follow-up observations of the low stellar mass targets are crucial to confirm the dependence of the external photoevaporation process with stellar host mass. This work confirms that the effects of external photoevaporation are significant down to impinging radiation as low as 104\sim 10^{4} G0_0.Comment: Accepted for publication on Astronomy & Astrophysics. 13 pages, 7 figures + appendix. Abstract abridged to meet arXiv requirement

    Main-Belt Comet P/2012 T1 (PANSTARRS)

    Full text link
    We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.Comment: 15 pages, 4 figures, accepted for publication in ApJ Letter

    A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi

    Get PDF
    We present a study of molecular gas in the inner disk (r ∼ 0.4± 0.1 au; {r(narrow,H₂)} ∼ 3± 2 au). The 4.7 μm ¹²CO emission lines are also well fit by two-component profiles ( {{r}broad,CO} =0.4± 0.1 au; {{r}narrow,CO} =15± 2 au). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts

    Planetesimals around stars with TESS (PAST) – I. Transient dimming of a binary solar analogue at the end of the planet accretion era

    Get PDF
    We report detection of quasi-periodic (1.5-d) dimming of HD 240779, the solar-mass primary in a 5 arcsec visual binary (also TIC 284730577), by the Transiting Exoplanet Survey Satellite. This dimming, as has been shown for other ‘dipper’ stars, is likely due to occultation by circumstellar dust. The barycentric space motion, lithium abundance, rotation, and chromospheric emission of the stars in this system point to an age of ≈125 Myr, and possible membership in the AB Doradus moving group. As such it occupies an important but poorly explored intermediate regime of stars with transient dimming between young stellar objects in star-forming regions and main-sequence stars, and between UX Orionis-type Ae/Be stars and M-type ‘dippers’. HD 240779, but not its companion BD+10 714B, has Wide-field Infrared Survey Explorer (WISE)-detected excess infrared emission at 12 and 22 μm indicative of circumstellar dust. We propose that infrared emission is produced by collisions of planetesimals during clearing of a residual disc at the end of rocky planet formation, and that quasi-periodic dimming is produced by the rapid disintegration of a ≳100 km planetesimal near the silicate evaporation radius. Further studies of this and similar systems will illuminate a poorly understood final phase of rocky planet formation like that which produced the inner Solar system
    corecore