293 research outputs found

    The impact of cyclin-dependent kinase 5 depletion on poly(ADP-ribose) polymerase activity and responses to radiation

    Get PDF
    Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels

    Right Heart Pulmonary Circulation Unit Response to Exercise in Patients with Controlled Systemic Arterial Hypertension: Insights from the RIGHT Heart International NETwork (RIGHT-NET)

    Get PDF
    Background. Systemic arterial hypertension (HTN) is the main risk factor for the development of heart failure with preserved ejection fraction (HFpEF). The aim of the study was was to assess the trends in PASP, E/E’ and TAPSE during exercise Doppler echocardiography (EDE) in hypertensive (HTN) patients vs. healthy subjects stratified by age. Methods. EDE was performed in 155 hypertensive patients and in 145 healthy subjects (mean age 62 ± 12.0 vs. 54 ± 14.9 years respectively, p < 0.0001). EDE was undertaken on a semi-recumbent cycle ergometer with load increasing by 25 watts every 2 min. Left ventricular (LV) and right ventricular (RV) dimensions, function and hemodynamics were evaluated. Results. Echo-Doppler parameters of LV and RV function were lower, both at rest and at peak exercise in hypertensives, while pulmonary hemodynamics were higher as compared to healthy subjects. The entire cohort was then divided into tertiles of age: at rest, no significant differences were recorded for each age group between hypertensives and normotensives except for E/E’ that was higher in hypertensives. At peak exercise, hypertensives had higher pulmonary artery systolic pressure (PASP) and E/E’ but lower tricuspid annular plane systolic excursion (TAPSE) as age increased, compared to normotensives. Differences in E/E’ and TAPSE between the 2 groups at peak exercise were explained by the interaction between HTN and age even after adjustment for baseline values (p < 0.001 for E/E’, p = 0.011 for TAPSE). At peak exercise, the oldest group of hypertensive patients had a mean E/E’ of 13.0, suggesting a significant increase in LV diastolic pressure combined with increased PASP. Conclusion. Age and HTN have a synergic negative effect on E/E’ and TAPSE at peak exercise in hypertensive subjects

    Acaricide Residues in Laying Hens Naturally Infested by Red Mite Dermanyssus gallinae

    Get PDF
    In the poultry industry, control of the red mite D. gallinae primarily relies worldwide on acaricides registered for use in agriculture or for livestock, and those most widely used are carbamates, followed by amidines, pyrethroids and organophosphates. Due to the repeated use of acaricides - sometimes in high concentrations - to control infestation, red mites may become resistant, and acaricides may accumulate in chicken organs and tissues, and also in eggs. To highlight some situations of misuse/abuse of chemicals and of risk to human health, we investigated laying hens, destined to the slaughterhouse, for the presence of acaricide residues in their organs and tissues. We used 45 hens from which we collected a total of 225 samples from the following tissues and organs: skin, fat, liver, muscle, hearth, and kidney. In these samples we analyzed the residual contents of carbaryl and permethrin by LC-MS/MS

    A Single-Photon Imager Based on Microwave Plasmonic Superconducting Nanowire

    Full text link
    Detecting spatial and temporal information of individual photons by using single-photon-detector (SPD) arrays is critical to applications in spectroscopy, communication, biological imaging, astronomical observation, and quantum-information processing. Among the current SPDs1,detectors based on superconducting nanowires have outstanding performance2, but are limited in their ability to be integrated into large scale arrays due to the engineering difficulty of high-bandwidth cryogenic electronic readout3-8. Here, we address this problem by demonstrating a scalable single-photon imager using a single continuous photon-sensitive superconducting nanowire microwave-plasmon transmission line. By appropriately designing the nanowire's local electromagnetic environment so that the nanowire guides microwave plasmons, the propagating voltages signals generated by a photon-detection event were slowed down to ~ 2% of the speed of light. As a result, the time difference between arrivals of the signals at the two ends of the nanowire naturally encoded the position and time of absorption of the photon. Thus, with only two readout lines, we demonstrated that a 19.7-mm-long nanowire meandered across an area of 286 {\mu}m * 193 {\mu}m was capable of resolving ~590 effective pixels while simultaneously recording the arrival times of photons with a temporal resolution of 50 ps. The nanowire imager presents a scalable approach to realizing high-resolution photon imaging in time and space

    Mutual and self-diffusion of charged porphyrines in aqueous solutions

    Get PDF
    a b s t r a c t We have investigated the diffusion properties for an ionic porphyrin in water. Specifically, for the {tetra-sodium tetraphenylporphyrintetrasulfonate (Na 4 TPPS) + water} binary system, the self-diffusion coefficients of TPPS 4À and Na + , and the mutual diffusion coefficients were experimentally determined as a function of Na 4 TPPS concentration from (0 to 4) Á 10 À3 mol Á dm À3 at T = 298.15 K. Absorption spectra for this system were obtained over the same concentration range. Molecular mechanics were used to compute size and shape of the TPPS 4À porphyrin. We have found that, at low solute concentrations ), the mutual diffusion coefficient sharply decreases as the concentration increases. This can be related to both the ionic nature of the porphyrin and complex associative processes in solution. Our experimental results are discussed on the basis of the Nernst equation, Onsager-Fuoss theory and porphyrin metal ion association. In addition, self-diffusion of TPPS 4À was used, together with the Stokes-Einstein equation, to determine the equivalent hydrodynamic radius of TPPS 4À . By approximating this porphyrin to a disk, we have estimated structural parameters of TPPS 4À . These were found to be in good agreement with those obtained using molecular mechanics. Our work shows how the self-diffusion coefficient of an ionic porphyrin in water is substantially different from the corresponding mutual-diffusion coefficient in both magnitude and concentration dependence. This aspect should be taken into account when diffusion-based transport is modelled for in vitro and in vivo applications of pharmaceutical relevance

    HLA class II DNA typing in a large series of European patients with systemic lupus erythematosus: correlations with clinical and autoantibody subsets

    Get PDF
    We conducted this study to determine the HLA class II allele associations in a large cohort of patients of homogeneous ethnic derivation with systemic lupus erythematosus (SLE). The large sample size allowed us to stratify patients according to their clinical and serologic characteristics. We studied 577 European Caucasian patients with SLE. Antinuclear antibodies (Hep-2 cells), anti-dsDNA antibodies (Crithidia luciliae), and antibodies to extractable nuclear antigens Ro (SS-A), La (SS-B), U1-RNP, Sm, Jo1, SCL70, and PCNA, were detected in all patients. Molecular typing of HLA-DRB1, DRB3, DQA1, and DQB1 loci was performed by the polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP) method. We found a significantly increased frequency of DRB1*03, DRB1*15, DRB1*16, DQA1*0102, DQB1*0502, DQB1*0602, DQB1*0201, DQB1*0303, and DQB1*0304 in lupus patients as compared with healthy controls. In addition, DRB1*03 was associated with anti-Ro, anti-La, pleuritis, and involvement of lung, kidney, and central nervous system. DRB1*15 and DQB1*0602 were associated with anti-dsDNA antibodies; DQB1*0201 with anti-Ro and anti-La, leukopenia, digital skin vasculitis, and pleuritis; and DQB1*0502 was associated with anti-Ro, renal involvement, discoid lupus, and livedo reticularis. In conclusion, our study shows some new HLA clinical and serologic associations in SLE and further confirms that the role of MHC genes is mainly to predispose to particular serologic and clinical manifestations of this disease

    Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis

    Get PDF
    Atypical imaging features of multiple sclerosis lesions include size >2 cm, mass effect, oedema and/or ring enhancement. This constellation is often referred to as ‘tumefactive multiple sclerosis’. Previous series emphasize their unifocal and clinically isolated nature, however, evolution of these lesions is not well defined. Biopsy may be required for diagnosis. We describe clinical and radiographic features in 168 patients with biopsy confirmed CNS inflammatory demyelinating disease (IDD). Lesions were analysed on pre- and post-biopsy magnetic resonance imaging (MRI) for location, size, mass effect/oedema, enhancement, multifocality and fulfilment of Barkhof criteria. Clinical data were correlated to MRI. Female to male ratio was 1.2 : 1, median age at onset, 37 years, duration between symptom onset and biopsy, 7.1 weeks and total disease duration, 3.9 years. Clinical course prior to biopsy was a first neurological event in 61%, relapsing–remitting in 29% and progressive in 4%. Presentations were typically polysymptomatic, with motor, cognitive and sensory symptoms predominating. Aphasia, agnosia, seizures and visual field defects were observed. At follow-up, 70% developed definite multiple sclerosis, and 14% had an isolated demyelinating syndrome. Median time to second attack was 4.8 years, and median EDSS at follow-up was 3.0. Multiple lesions were present in 70% on pre-biopsy MRI, and in 83% by last MRI, with Barkhof criteria fulfilled in 46% prior to biopsy and 55% by follow-up. Only 17% of cases remained unifocal. Median largest lesion size on T2-weighted images was 4 cm (range 0.5–12), with a discernible size of 2.1 cm (range 0.5–7.5). Biopsied lesions demonstrated mass effect in 45% and oedema in 77%. A strong association was found between lesion size, and presence of mass effect and/or oedema (P < 0.001). Ring enhancement was frequent. Most tumefactive features did not correlate with gender, course or diagnosis. Although lesion size >5 cm was associated with a slightly higher EDSS at last follow-up, long-term prognosis in patients with disease duration >10 years was better (EDSS 1.5) compared with a population-based multiple sclerosis cohort matched for disease duration (EDSS 3.5; P < 0.001). Given the retrospective nature of the study, the precise reason for biopsy could not always be determined. This study underscores the diagnostically challenging nature of CNS IDDs that present with atypical clinical or radiographic features. Most have multifocal disease at onset, and develop RRMS by follow-up. Although increased awareness of this broad spectrum may obviate need for biopsy in many circumstances, an important role for diagnostic brain biopsy may be required in some cases
    corecore