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Abstract. There has been increasing interest in the analysis of corneal
nerve fibers to support examination and diagnosis of many diseases, and
for this purpose, automated nerve fiber segmentation is a fundamental
step. Existing methods of automated corneal nerve fiber detection con-
tinue to pose difficulties due to multiple factors, such as poor contrast
and fragmented fibers caused by inaccurate focus. To address these prob-
lems, in this paper we propose a novel weighted local phase tensor-based
curvilinear structure filtering method. This method not only takes into
account local phase features using a quadrature filter to enhance edges
and lines, but also utilizes the weighted geometric mean of the blurred
and shifted responses to allow better tolerance of curvilinear structures
with irregular appearances. To demonstrate its effectiveness, we apply
this framework to 1578 corneal confocal microscopy images. The ex-
perimental results show that the proposed method outperforms existing
state-of-the-art methods in applicability, effectiveness, and accuracy.

Keywords: Corneal nerve, curvilinear structure, segmentation, local
phase

1 Introduction

Over the last decade, several studies [1,2,3] have confirmed that numerous corneal
nerve properties, such as nerve fiber branching, density, length, tortuosity, etc.,
are linked to both systemic diseases and conditions of the eye [4,5]. Early de-
tection of these properties may help to reduce the incidence of vision loss and
blindness. For this to be possible, accurate detection and analysis of the nerve
fiber is essential [6].

In vivo confocal microscopy (IVCM) is the common technique of choice for
the imaging and inspection of corneal nerves: in particular, for the non-invasive
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Fig. 1. Corneal nerves images with poor contrast (left), non-target structures (middle),
and discontinuous and multiple spatial scales of fibers (right).

acquisition of the subbasal nerve plexus[7]. The manual identification of nerve
fiber by ophthalmologists is tedious, highly labour-intensive and subject to hu-
man error, while the available commercial software still relies heavily on manual
refinement. Consequently, development of an automatic vascular tracing method
is indispensable to overcome time constraints and avoid human error.

Extensive work has been carried out on automatic curvilinear structure seg-
mentation (see [8,9] for extensive reviews). Although it bears a superficial simi-
larity to other curvilinear structure segmentation tasks, segmenting corneal nerve
fiber is more challenging because of poor contrast and fragmented and multiple
scales of tortuous fiber in the image, as shown as Fig. 1. Moreover, many images
contain potentially confusing non-target structures such as dendritic cells that
can be easily mistaken for fiber given their similar appearance.

In this work, we introduce a new curvilinear feature enhancement metric:
namely a weighted local phase tensor. This tensor is enabled by log-Gabor filter,
Hessian transform, blurring and shifting functions, to resolve the weak response
and discontinuities yielded by most filter-based methods.

1.1 Related Works

Numerous corneal nerve fiber segmentaion methods have been proposed during
the last decade. Ruggeri et al. [10] and Scarpa et al. [11] adopted Gabor filtering
to enhance nerve visibility: a tracking procedure was then implemented, starting
from a set of automatically-defined seed points. Fuzzy c-mean clustering was
then applied to classify the pixels as nerve or non-nerve pixels. Poletto [12]
further extended the method of [10] to a dataset consisting of 30 epithelium
corneal images, the nerves were extracted by connecting the seed points using
their minimum cost paths. Dabbah et al. [13] further proposed a multi-scale
adaptive dual-model detection algorithm, based on random forest and neural
networks.

Ferreira et al. [14] enhanced IVCM images using phase-shift analysis, then
identified the nerve structures by using a phase symmetry-based filter. Guimaraes
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et al. [15] removed illumination artefacts by applying top-hat filtering and a bank
of log-Gabor filters. The hysteresis threshold approach was used to determine
the candidate nerve segments, and true and false nerve segments were distin-
guished using support vector machines (SVM). Annunziata et al. [16] proposed
a hand-crafted ridge detector, SCIRD, which utilized curved-support Gaussian
models to compute the second order directional derivative in the gradient di-
rection at each pixel. Al-Fahdawi et al. [17] used a coherence filter to improve
the IVCM image quality: morphological operations were then applied to remove
epithelial cells; the corneal nerves were extracted using an improved edge detec-
tion method which was able to bridge the nerve discontinuities. More recently,
Colonna et al. [18] used a deep learning approach, the U-Net-based Convolu-
tional Neural Network [19], to trace the corneal nerve. It consisted of a contract-
ing path, which captured nerve descriptors, and a symmetric expanding path,
which enabled precise nerve localization.

However, the above-mentioned corneal nerve tracing methods need further
improvement, as confocal corneal images contain spurious illumination artefacts,
and the whole image may appear dimmed due to focusing problems. Moreover,
bright, elongated structures other than nerve segments (e.g., cells), are normally
present, and these may cause false-positives. For these reasons, image and nerve
enhancement are two essential steps in the process of discriminating the corneal
nerve tree.

2 Method

A quadrature filter is a well-designed tool for distinguishing intrinsic features
in the image that are invariant to changes in illumination. In this section, we
propose the use of a weighted local phase tensor to enhance the fiber structures
within the IVCM images.

2.1 Local phase tensor

For a one-dimensional (1D) problem, by using the so-called analytical function,
the amplitude A(x) and phase φ(x) of a given signal f(x) is defined as A(x) =

‖f(x)− ifH(x)‖ =
√
f2(x) + f2

H(x), and φ(x) = arctan
( f(x)
fH(x)

)
, where i =

√
−1,

and fH(x) is the Hilbert transform of f(x) [20].
In order to enhance spatial localization and to avoid the problems posed by

the analytic signal for 2D or higher dimensions and the 2D Hilbert transform,
the analysis of the signal must be take over a narrow range of frequencies at
different locations in the 2D signal. Boukerroui et al. [20] suggested that local
phase should be estimated by a quadrature filter with even-symmetric and odd-
symmetric parts. In consequence, the definition of local phase in 2D application
may be rewritten as:

φ(x) = arctan
(fe(x) ∗ f(x)
fo(x) ∗ f(x)

)
= arctan

(E(x)

O(x)

)
. (1)
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where fe(x)∗f(x) is the even (symmetric) band-pass filter and denotes as E(x),
while fo(x) = H(fe(x)) is the Hilbert transform of the even filter fe(x), and
denotes as O(x). In particular, the log-Gabor (log normal) filter is a commonly
used quadrature filter, and E(x) and O(x) are the responses of even and odd
quadrature pair filter to an image can be estimated by:

E(x) = real{F−1(LG(ω)× F (x))}, (2)

O(x) = imag{F−1(LG(ω)× F (x))}, (3)

where LG, F and F−1 indicate the log-Gabor filtering, the forward and inverse
Fourier transforms, respectively.

Then the local phase tensor in symmetric and asymmetric aspects TE and
TO are calculated as [21]:

TE = [H(E(x))] · [H(E(x))]T , (4)

TO =− 1

2
([∇(O(x))] · [∇∇2(O(x))]T

+ [∇∇2(O(x))] · [∇(O(x))]T ),
(5)

where H denotes the Hessian operation, and ∇, ∇2 indicates the Gradient and
Laplacian operations, respectively. The superscript T denotes the transpose op-
eration.

According to the monogenic signal analysis [22], the local phase tensor can
be obtained by:

T =

Θ∑

θ=1

{√
(T θ

E )
2 + (T θ

O)
2
}
· cos(ϕ). (6)

In practice, multiple orientations are needed to capture structures at differ-
ent directions. Furthermore, in order to achieve a rationally invariant tensor,
filters for all directions have to be combined. Θ indicates the set of directions
under consideration: Θ = { π

16 ,
2π
16 ,

3π
16 , · · · , 15π

16 , π}. The instantaneous phase ϕ
presenting the local contrast independently of feature type (line and edge), and
may be defined as

ϕ(x) = Eθ(x) + |Oθ(x)|i, (7)

As observed from Eqn. (2) and Eqn. (3), E(x) reaches the maximal response at
lines while O(x) is almost 0, the filter response is purely real, and leads to a line-
like signal. While for edges, the E(x) is 0 and O(x) has the maximal response,
and the filter response is purely imaginary. This suggests that image edges align
with the zero crossing of the real part of the phase map. Therefore, the real part
of the response Eθ(x) and the absolute value of the imaginary part Oθ(x) are
used, with a view to avoid confusion caused by changes in structural direction.
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2.2 Weighted local phase tensor

In real applications, due to poor contrast the extracted responses of the corneal
nerves are represented as discontinuities. In consequence, in order to permit
greater tolerance of the positions, deformations and scales of the respective con-
tours, blurring and shifting operations are applied to the local phase tensor. The
blurring operation is able to suppress the noise or background, and the shifting
operation is used to enhance the response of the quadrature filter by maximizing
all neighboring pixels in low-contrast in the dark and low contrast regions [23].

The blurring consists of a dilation of the filter response with a Gaussian
function Gσ with standard deviation σ: σ = σ0 + αρ. The σ0 and α are the
constants that regulate the tolerance to deformation of the concerned responses,
and ρ is the radius parameter, representing a linear function of the distance from
the centre of the quadrature filter. We then shift each blurred local phase tensor
by a distance ρi in the direction opposite to φi. Formally, the i-th blurred and
shifted responses Sσi,ρi,φi of the local phase tensor T can be calculated by:

Sρi,φi
(u, v) =

max
u′,v′

{Tσi
(u−∆ui − u′, v −∆vi − v′)Gσ′(u′, v′)}. (8)

where −3σ ≤ u′, v′ ≤ −3σ. The above configuration process represents a con-
volution of the weighting function with respect to the filter center u, v, and
S = {(ρi, φi)|i = 1, . . . , n}, where n indicates the number of quadrature re-
sponses. ∆ui = −ρicosφi and ∆vi = −ρisinφi is the shift vector of i-th quadra-
ture responses in Cartesian coordinates. This shift operation is able to assemble
all the responses at the proposed filter centre. The parameter values of S can be
automatically determined from the aforementioned filter settings of the standard
deviation of the filter responses, kernel size, and orientations: ρi ∈ {0, 2, 4} and
φi ∈ {0, 0.5π, π, 1.5π}.

Then the weighted local phase tensor T̂ for a given image is defined as a
threshold ǫ of a multiplication of Sρi,φi

:

T̂ =

∣∣∣∣
|S|∏

i=1

(Sρi,φi
)

∣∣∣∣
ǫ

. (9)

where ǫ denotes the control parameter that sets the threshold of the response at
a fraction ǫ (0 ≤ τ ≤ 1) of the maximum response.

In order to enhance curvilinear structures of different sizes present within a
single image, multiple scales fusion is needed. In our study, the given image is
uniformly down-sampled to 1/m of its original size, and the fused local phase
tensor is defined as:

T̂ =

∑M
m=1 Tm|Tm|γ
∑M

m=1 |Tm|γ
(10)

wherem ∈ {1, · · ·M}, andM denotes the number of scales (M = 3 in this work).
γ is the order number of the power of the magnitude of the filter response at
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Fig. 2. Illustrative enhancement results using the local phase tensor and weight local
phase tensor. (a) original image; (b) groundtruth; (c) response of local phase tensor;
(d) response of weighted local phase tensor.

each scale. Fig. 2 demonstrates that the proposed weighted local phase tensor
acts as a general curvilinear structure indicator, providing an improved local
phase tensor. It may be observed that the proposed weighted local phase tensor
is able to better preserve poorly-imaged, low-contrast fibers, which appear as
discontinuous to the unweighted tensor (Fig. 2(c) and (d): red arrows).

3 Materials and Evaluation metrics

3.1 Dataset

A total of 1578 images of corneal subbasal epithelium from 108 normal and
pathological subjects were acquired using a Heidelberg Retina Tomograph equipped
with a Rostock Cornea Module (HRT-III) microscope (Heidelberg Engineering
Inc.). The 108 subjects included: 30 healthy subjects; 18 subjects with diabetes;
and 60 subjects with dry eye disease. The image resolution was 384×384 pixels,
and the field of view was 400 × 400µm2. The nerves appear as bright curvilin-
ear structures lying over a darker background. The reference groundtruth was
segmented manually by an ophthalmologist, who traced the centerlines of all
visible nerves using an in-house program written in Matlab (Mathworks R2017,
Natwick).

3.2 Evaluation metrics

To compare the nerve fiber tracing performance of the proposed method with the
corresponding groundtruth, we computed the sensitivity and false discovery rate
(FDR) [15] between the predicted centerlines and groundtruth centerlines. Sen-
sitivity is the fraction of the number of pixels in the correctly detected nerve seg-
ments (true positives) nerves over the total number of pixels in the groundtruth
nerves. FDR is defined as the fraction of the total number of pixels incorrectly
detected as nerve segments( false positives) nerves over the total number of pix-
els of the traced nerves in groundtruth. The use of specificity, defined as the
number of pixels correctly rejected as non-nerve structures (true negatives), is
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Fig. 3. Illustrative results of corneal nerve filtered by different curvilinear structure
enhancement methods.

not adequate for the evaluation of this tracing task, since the vast majority of
pixels do not belong to corneal nerves.

It is worth noting that, as is customary in the evaluation of methods ex-
tracting one pixel-wide curves [15], a three-pixel tolerance region around the
manually traced nerves is considered to be a true positive. In other words, a
predicted centerline point is considered as true positive if is no more than three
pixels distant from the nearest ground truth centerline point.

4 Experimental Results

We validated the effectiveness of the proposed weighted local phase tensor-based
nerve fiber segmentation method against three other state-of-the-art curvilinear
structure enhancement methods: Frangi’s Vesselness filter (FVF) [24], multiscale
hessian filter (MHF) [25], and combination of shifted filter responses (COS-
FIRE) [23]. An infinite perimeter active contour with hybrid region (IPACHR)
method [26] is used to segment the fibers from the filtered curvilinear structures.
However, other sophisticated segmentation methods may work equally well. For
a fair comparison, the parameters of these filters were optimized for best per-
formance as follows. FVF scales: 1-8, scale ratio: 2; MHF scales: 1-3, spacing
resolution: [3;3]; COSFIRE scales: 1-4, orientation: θ ∈ {πi

8 |i = 0, · · · 7}, thresh-
old value: 0.35.

Fig. 3 demonstrates the filtered curvilinear structures obtained by applying
these different methods. Overall, all methods demonstrated similar performance
on fibers with large diameters. It can be seen that FVF is able to enhance most
larger fibers, but falsely enlarges background features where intensity inhomo-
geneities are present. MHF misses most fibers with small diameters, and also
enhances some background regions, which leads to inaccurate identification of
the fiber structures. As for the COSFIRE, the fiber edges are clearly enhanced,
and this method achieves better results in distinguishing fiber from background.
However, the COSFIRE also enhanced some surrounding non-target structures.
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Fig. 4. Illustrative results of corneal nerves traced by U-Net and by the proposed
method.

Table 1. Performance of five different segmentation methods.

Methods Sensitivity FDR

FVF 0.912 ± 0.25 0.181 ± 0.12
MHF 0.933 ± 0.19 0.142 ± 0.11
COSFIRE 0.950 ± 0.24 0.113 ± 0.09
U-Net 0.956 ± 0.17 0.105 ± 0.08
Proposed 0.963 ± 0.12 0.096 ± 0.09

In contrast to these filters, we can see that the proposed method generally
demonstrated superior performance in detecting nerve fiber regions (uniform
responses at both high and low intensities), and provided relatively stronger re-
sponses to small fibers than other methods. In other words, the proposed method
is not only able to enhance fiber regions so as to stand out more conspicuously
from background, but also has the ability to reject non-fiber features. Such prop-
erties are due to the proposed filter retaining the intrinsic information of features
that are invariant to changes in intensity, location and scale, which permits better
detection of curvilinear structures under varying conditions. Table 1 shows this
superior segmentation performance based on the proposed curvilinear structures
enhancement method, demonstrating both higher sensitivity and lower FDR by
significant margins.

It is interesting to note that the visual results (Fig. 4) and evaluation metrics
(Table 1) demonstrate that our method performs better than the deep learning-
based approach: U-Net [19], which has recently attracted attention. We employed
the U-Net-based convolutional neural network [18] for the fully automatic seg-
mentation of corneal nerves from the IVCM image. This network comprises a
contracting-encoder and an expanding-decoder, which allows the user to obtain
a label classification for every single pixel. We trained the U-Net on randomly
sampled images from the database, reserving 20% of this database as a validation
set.
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5 Conclusions

Nerve fiber segmentation is the fundamental step in automated diagnosis of
many nerve-related diseases, and it remains a challenging medical image analy-
sis problem despite considerable effort in research. Many factors come together
to make this problem difficult to address, such as uneven illumination and noise
in the original image. In this paper, we have presented a weighted local phase
tensor-based curvilinear structure filtering method, and have applied it success-
fully to corneal nerve fiber segmentation. The proposed filter exploits the advan-
tages of a local phase tensor, making use of the geometric mean of blurred and
shifted quadrature filter responses to allow more tolerance in the position of the
respective contours. The evaluation results demonstrate the superiority of our
model when compared with other state-of-the-art methods. It is our intention in
our future work to measure the tortuosity, length, and density of the extracted
nerves, so as to further evaluate the significance of changes in these morpholog-
ical features and their association with nerve-related diseases, such as diabetic
neuropathy.
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