9 research outputs found

    Impact of proteasomal immune adaptation on the early immune response to viral infection

    Get PDF
    Im Kampf gegen eine Virusinfektion spielen CD8+ T Zellen des adaptiven Immunsystems eine besondere Rolle. Sie patroullieren im Körper und entdecken spezifische Virusepitope, welche mittels MHC Klasse I Molekülen auf der Oberfläche infizierter Zellen präsentiert werden. Wird eine virus-infizierte Zelle erkannt, kann diese schnell und effizient eliminiert. Für die Generierung viraler Peptide, welche auf MHC Klasse I Komplexe geladen werden, ist das Ubiquitin-Proteasom-System von essentieller Bedeutung. Kürzlich wurden weitere Funktionen des Immunoproteasoms aufgedeckt wie zum Beispiel der Schutz gegen oxidativen Stress. Innerhalb der vorliegenden Arbeit konnte die Fähigkeit des Immunoproteasoms gegen eine Akkumulation oxidativ geschädigter Proteine zu schützen mit der Generierung von MHC Klasse I Liganden kombiniert und neu interpretiert werden. Es konnte gezeigt werden, dass während einer Virusinfektion in Nicht-Immunzellen die Produktion reaktiver Sauerstoffspezies durch die alternative NADPH Oxidase Nox4 eine bedeutende Rolle spielt. Die Aktivierung von Nox4 resultiert in der Akkumulation oxidativ geschädigter Proteine. Innerhalb von zwei Stunden nach dem Eintreten von Viruspartikeln in die Zellen wurden strukturelle Virusproteine oxidiert und anschließend ubiquityliert. Die gleichzeitige, virus-induzierte Expression von Immunoproteasomen führte zu einem schnellen und effizienten Abbau ubiquitylierter Virusantigene. Infolgedessen konnten immundominante Virusepitope vermehrt freigesetzt werden. Folglich wurde ein soweit unbekannter Mechanismus gefunden, welcher Substrate für das Proteasom zur Generierung von MHC Klasse I Liganden bereitstellt. Zusammenfassend konnte innerhalb dieser Arbeit gezeigt werden, dass das Immunoproteasom den Schutz vor oxidativen Stress mit der Generierung antigener Peptide verbindet, wodurch eine effektive adaptive Immunantwort etabliert werden kann.An efficient immune control of virus infection is predominantly mediated by CD8+ T cells which patrol through the body and eliminate infected cells. Infected cells are recognized when they present viral antigenic peptides on their surface via MHC class I molecules. To make antigenic peptides available for loading on MHC class I complexes, the ubiquitin proteasome system plays a crucial role. Moreover, the induction of the i-proteasome is known to support the generation of MHC class I ligands. Recently, new functions of the i-proteasome have been discovered. Evidence is increasing that the i-proteasome is involved in the protection of cells against oxidative stress. Within this thesis the characteristic of the i-proteasome to protect cells against the accumulation of oxidant-damaged proteins could be linked to its role in improving the generation of MHC class I ligands. It could be demonstrated that during a virus infection in non-immune cells the production of reactive oxygen species by the alternative NADPH oxidase Nox4 is of critical importance resulting in the accumulation of potentially toxic oxidant-damaged proteins. Indeed, within two hours of infection structural virus proteins were oxidized and subsequently poly-ubiquitylated. The concomitant formation of i-proteasomes led to a rapid and efficient degradation of ubiquitylated virus antigens thereby improving the liberation of immunodominant viral epitopes. In conclusion, a so far unknown mechanism to fuel proteasomal substrates into the MHC class I antigen presentation pathway has been revealed. A new protein pool consisting of exogenously delivered viral proteins provides proteasomal substrates in the very early phase of a virus infection. Within the scope of this thesis the i-proteasome has been shown to link the protection against oxidative stress, initiated directly by pathogen recognition, with the generation of antigenic peptides. Together, an effective adaptive immune response is triggered

    Oxidation matters: The ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation

    No full text
    During innate immune responses the delicate balance of protein synthesis, quality control and degradation is severely challenged by production of radicals and/or the massive synthesis of pathogen proteins. The regulated degradation of ubiquitin-tagged proteins by the ubiquitin proteasome system (UPS) represents one major pathway for the maintenance of cellular proteostasis and regulatory processes under these conditions. In addition, MHC class I antigen presentation is strictly dependent on an appropriate peptide supply by the UPS to efficiently prime CD8+ T cells and to initiate an adaptive immune response. We here discuss recent efforts in defining the link between innate immune mechanisms like cytokine and ROS production, the induction of an efficient adaptive immune response and the specific involvement of the UPS therein. Cytokines and/or infections induce translation and the production of free radicals, which in turn confer oxidative damage to nascent as well as folded proteins. In parallel, the same signaling cascades are able to accelerate the protein turnover by the concomitantly induced ubiquitin conjugation and degradation of such damaged polypeptides by immunoproteasomes. The ability of immunoproteasomes to efficiently degrade such oxidant-damaged ubiquitylated proteins protects cells from accumulating toxic ubiquitin-rich aggregates. At the same time, this innate immune mechanism facilitates a sufficient peptide supply for MHC class I antigen presentation and connects it to initiation of adaptive immunity.</p

    Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis

    No full text
    Secretion of the cytokine interleukin-1β (IL-1β) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps. First, priming signals promote transcription of immature IL-1β and then, endogenous “danger” signals activate innate immune signaling complexes called inflammasomes, to process IL-1β processing for secretion. While cholesterol crystals act as danger signals in atherosclerosis, what primes IL-1β transcription remains elusive. Using a murine model of atherosclerosis, we show that cholesterol crystals acted both as priming and danger signals for IL-1β production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating Th-17 cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils
    corecore