14 research outputs found

    New Generation of Educators Initiative: Transforming teacher preparation.

    Get PDF
    The focus of the New Generation of Educators Initiative (NGEI) was to answer the question "What would it take to transform teacher education?" From 2016 to 2019, with support from the S. D. Bechtel, Jr. Foundation, teacher education programs at 10 California State University (CSU) campuses partnered with local school districts to design and demonstrate innovative practices that could transform teacher preparation. This report documents the learnings from multiple participants in this transformative work, including Foundation program staff and representatives from partnerships between universities and school districts

    Emergency Contraception Provision: A Survey of Michigan Physicians from Five Medical Specialties

    Full text link
    Objective: Despite the controversy over expanding delivery options for emergency contraceptive pills (ECP), little is known about physicians′ attitudes toward over-the-counter (OTC) provision of ECP, and prior research on physicians′ practices often has focused on a single specialty. This study examined the attitudes and practices regarding advance provision and OTC status of ECP among physicians in five medical specialties likely to encounter patients in need of ECP. Methods: A mail survey of a random sample of 850 Michigan physicians in family/general medicine, internal medicine, obstetrics/gynecology, pediatrics, and emergency medicine was conducted. Respondents′ ECP-related attitudes and practices were assessed, and differences by physician characteristics were examined using chi-square tests and multivariable logistic regression analyses. Results: Two hundred seventy-one physicians responded to the survey (response rate = 32%), with 42% of them favoring OTC provision of ECP and 40% opposing it. Half of respondents never routinely initiated discussions about ECP with their sexually active, female patients, and 77% of respondents did not routinely offer advance prescriptions. After adjusting for other factors, including medical specialty, older physicians ( ≥50 years) were significantly more likely than their younger counterparts to support OTC provision of ECP (OR = 2.9, 95% CI 1.7-4.9) or offer advance prescriptions (OR = 2.5, 95% CI 1.1-5.8). Physicians with a specialty in obstetrics/gynecology were 3.5 times (95% CI 1.3-9.8) as likely as physicians in family/general medicine to offer advance prescriptions for ECP, and female physicians were 2.5 (95% CI 1.05-6.0) times as likely as male physicians to offer advance prescriptions. Graduation from a medical school within the United States and practicing in a private practice were marginally associated with a lower likelihood of supporting OTC status of ECP (OR = 0.5, 95% CI: 0.2-1.0; and OR equals; 0.6, 95% CI 0.3-1.1, respectively). Conclusions: Certain physician characteristics were significantly associated with their ECP-related attitudes and practices. The majority of physicians surveyed in this study did not offer advance prescriptions for ECP, and few had initiated discussions on ECP with patients, which may pose critical barriers to patients′ timely access.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63439/1/jwh.2006.0196.pd

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged

    The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe

    No full text
    210 pages, 91 figures. Exposure draft. Appendices to the Detailed Science Case can be found at http://mse.cfht.hawaii.edu/docs/MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged
    corecore