123 research outputs found

    Effect of variation in ocean temperature on nest attentiveness of a rare seabird, the Kittlitz’s Murrelet (Brachyramphus brevirostris)

    Get PDF
    Seabird reproductive success relies on forage availability not only when adults are feeding nestlings, but also during the pre-breeding period when adults must secure nutrients for egg production and incubation. Ocean conditions, particularly temperature, may have significant effects on the availability of food resources both during and prior to nest initiation. Incubation behavior has been proposed as an indicator of the impacts of ocean climate variability on seabird reproductive success. Little is known, however, about the incubation behavior of seabirds such as the Kittlitz’s Murrelet (Brachyramphus brevirostris). The Kittlitz’s Murrelet is a small seabird that breeds on the western coast of Alaska, USA. The species experienced rapid population declines in the 1980s and 1990s and remains a rare species with low reproductive success. To determine the influence of warming sea surface temperatures (SSTs) on the incubation behavior of the Kittlitz’s Murrelet, I analyzed digital camera images collected at nests (n = 68) from 2009 to 2015 on Kodiak National Wildlife Refuge. Kittlitz’s Murrelets must attend nests at rates exceeding 94.7% for the probability of hatch to exceed the probability of nest failure pre-hatch. A logistic regression indicated a significant negative relationship between ocean temperature and parental attentiveness during the incubation period. SSTs taken from the National Oceanic and Atmospheric Administration’s National Buoy Database indicate El Niño conditions in 2015, and total nest attentiveness was most variable in this year. Parental attentiveness of the Kittlitz’s Murrelet during incubation may be an important indicator of environmental stress caused by warming SSTs. Climate models predict increasing intensity and frequency of El Niño events, leading to concerns regarding population-level impacts. Further studies should explore the interactions between ocean temperature, initiation date, nest attentiveness, and nest success

    Climate Change in the Piscataqua/Great Bay Region: Past, Present, and Future

    Get PDF
    Earth ’s climate changes. It always has and always will. However, an extensive body of scientific evidence indicates that human activities are now a significant force driving change in the Earth’s climate system. This report describes how the climate of the Piscataqua/Great Bay region of coastal New Hampshire in the United States has changed over the past century and how the future climate of the region will be affected by human activities that are warming the planet. Overall, the region has been getting warmer and wetter over the last century, and the rate of change has increased over the last four decades. To generate future climate projections for the region, simulated temperature and precipitation from four general circulation models were fitted to local, long-term weather observations. Unknowns regarding future fossil fuel consumption were accounted for by using two future emissions scenarios. As greenhouse gases continue to accumulate in the atmosphere, temperatures will rise, extreme heat days are projected to occur more often and will be hotter, extreme cold temperatures are projected to occur less often, and cold days will be warmer.. Annual average precipitation is projected to increase 12 to 17% by end-of-century and the region can expect to see more extreme precipitation events in the future. Tidal gauge data indicates relative sea level at Portsmouth has risen 0.7 inches per decade over the past eight decades. Projected sea level rise of 1.7 to 6.3 feet will result in higher storm surges and more frequent flooding in coastal New Hampshire

    Climate Change in Northern New Hampshire: Past, Present and Future

    Get PDF
    EARTH’S CLIMATE CHANGES. It always has and always will. However, an extensive and growing body of scientific evidence indicates that human activities—including the burning of fossil fuel (coal, oil, and natural gas) for energy, clearing of forested lands for agriculture, and raising livestock—are now the primary force driving change in the Earth’s climate system. This report describes how the climate of northern New Hampshire has changed over the past century and how the future climate of the region will be affected by a warmer planet due to human activities

    Climate Change in Southern New Hampshire: Past, Present and Future

    Get PDF
    EARTH’S CLIMATE CHANGES. It always has and always will. However, an extensive and growing body of scientific evidence indicates that human activities—including the burning of fossil fuel (coal, oil, and natural gas) for energy, clearing of forested lands for agriculture, and raising livestock—are now the primary force driving change in the Earth’s climate system. This report describes how the climate of southern New Hampshire has changed over the past century and how the future climate of the region will be affected by a warmer planet due to human activities

    An environmental assessment of cattle manure and urea fertilizer treatments for corn production in the northern Great Plains

    Get PDF
    Nitrogen (N), phosphorus (P), and carbon (C) emissions from livestock systems have become important regional, national, and international concerns. Our objective was to use process-level simulation to explore differences among manure and inorganic fertilizer treatments in a corn production system used to feed finishing cattle in the Northern Great Plains region of the U.S. Our analysis included model assessment, simulation to compare treatments under recent climate, and comparisons using projected midcentury climate. The Integrated Farm System Model was evaluated in representing the performance and nutrient losses of corn production using cattle manure without bedding, manure with bedding, urea, and no fertilization treatments. Two-year field experiments conducted near Clay Center, Nebraska; Brookings, South Dakota; and Fargo, North Dakota provided observed emission data following these treatments. Means of simulated emission rates of methane, ammonia, and nitrous oxide were generally similar to those observed from field-applied manure or urea fertilizer. Simulation of corn production systems over 25 years of recent climate showed greater soluble P runoff with use of feedlot and bedded manure compared to use of inorganic fertilizers, but life-cycle fossil energy use and greenhouse gas emission were decreased. Compared to feedlot manure, application of bedded pack manure generally increased N and P losses in corn production by retaining more N in manure removed from a bedded housing facility and through increased runoff because a large portion of the stover was removed from the cornfield for use as bedding material. Simulation of these treatments using projected midcentury climate indicated a trend toward a small increase in simulated grain production in the Dakotas and a small decrease for irrigated corn in Nebraska. Climate differences affected the three production systems similarly, so production and environmental impact differences among the fertilization systems under future climate were similar to those obtained under recent climate

    Modern foraminiferal assemblages in northern Nares Strait, Petermann Fjord, and beneath Petermann ice tongue, NW Greenland

    Get PDF
    Calving events of Petermann Glacier, northwest Greenland, in 2010 and 2012 reduced the length of its ice tongue by c. 25 km, allowing exploration of newly uncovered seafloor during the Petermann 2015 Expedition. This article presents the results of foraminiferal analysis and environmental data from thirteen surface sediment samples in northern Nares Strait and Petermann Fjord, including beneath the modern ice tongue. This is the first study of living foraminifera beneath an arctic ice tongue and the first modern foraminiferal data from this area. Modern assemblages were studied to constrain species environmental preferences and to improve paleoenvironmental interpretations of foraminiferal assemblages. Sub–ice tongue assemblages differed greatly from those at all other sites, with very low faunal abundances and being dominated by agglutinated fauna, likely reflecting low food supply under the ice tongue. Fjord fauna were comprised of 80 percent or more calcareous species. Notably, Elphidium clavatum is absent beneath the ice tongue although it is dominant in the fjord. Increasing primary productivity associated with the transition to mobile sea ice, diminishing influence of the Petermann Glacier meltwater with distance from the grounding line, and increased influence of south-flowing currents in Nares Strait are the important controls on the faunal assemblages

    The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland

    Get PDF
    Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW’s retrograde backslope forming small retreat ridges to 680 m current depth (∼730–800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped

    Suburban watershed nitrogen retention : estimating the effectiveness of stormwater management structures

    Get PDF
    Excess nitrogen (N) is a primary driver of freshwater and coastal eutrophication globally, and urban stormwater is a rapidly growing source of N pollution. Stormwater best management practices (BMPs) are used widely to remove excess N from runoff in urban and suburban areas, and are expected to perform under a wide variety of environmental conditions. Yet the capacity of BMPs to retain excess N varies; and both the variation and the drivers thereof are largely unknown, hindering the ability of water resource managers to meet water quality targets in a cost-effective way. Here, we use structured expert judgment (SEJ), a performance-weighted method of expert elicitation, to quantify the uncertainty in BMP performance under a range of site-specific environmental conditions and to estimate the extent to which key environmental factors influence variation in BMP performance. We hypothesized that rain event frequency and magnitude, BMP type and size, and physiographic province would significantly influence the experts’ estimates of N retention by BMPs common to suburban Piedmont and Coastal Plain watersheds of the Chesapeake Bay region. Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from 40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future
    • …
    corecore