101 research outputs found

    Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium difficile </it>and methicillin-resistant <it>Staphylococcus aureus </it>are critical human pathogens and of increasing concern in food animals. Because of the apparent impact of age on prevalence of these organisms, studies of slaughter age pigs are important when considering the potential for contamination of food. This study evaluated <it>C. difficile </it>and MRSA shedding by slaughter age pigs from farms across Canada.</p> <p>Results</p> <p><it>Clostridium difficile </it>was isolated from 30/436 (6.9%) samples from 15/45 (33%) farms. After adjusting for clustering at the herd level, the prevalence was 3.4%. Ribotype 078 (toxinotype V, North American Pulsotype 7) was the most common strain, accounting for 67% of isolates. MRSA was isolated from 21/460 (4.6%) pigs from 5/46 (11%) farms. The prevalence in pigs after adjusting for clustering at the herd level was 0.2%. Seven different spa types were identified, with 3 related spa types (t011, t034, new) accounting for 16 (76%) consistent with ST398 predominating.</p> <p>Both MRSA and <it>C. difficile </it>samples were collected from 45 farms. Both MRSA and <it>C. difficile </it>were detected on 2 (4.4%), with <it>C. difficile </it>only on 13 (29%), MRSA only on 3 (6.7%) and neither on 27 (60%).</p> <p>Conclusions</p> <p>The prevalence of <it>C. difficile </it>and MRSA in slaughter age pigs was relatively low, particularly in comparison with studies involving younger pigs. The predominance of <it>C. difficile </it>ribotype 078 and MRSA ST398 was not surprising, but there was diversity in strain types and the majority of isolates of both organisms were strains that can be found in humans. While the prevalence of <it>C. difficile </it>and MRSA in slaughter age pigs was relatively low, there is clearly potential for contamination of meat from healthy pigs carrying this pathogen into slaughterhouses.</p

    Reported antimicrobial use and Salmonella resistance on 90 Alberta swine farms

    Get PDF
    The study objectives were to describe antimicrobial use (AMU) and Salmonella resistance on 90 Alberta swine farms. The vast majority of antimicrobials were used in-feed. In weaners, in-feed use did not vary among farms, suggesting heavy reliance on in-feed antimicrobials. For grow-to-finish production phases, most farms reported heavy reliance on in-feed antimicrobials, but 6 and 14 farms did not report any in-feed AMU in growers and finishers, respectively

    Neuron-specific alterations in signal transduction pathways associated with Alzheimer's disease

    Get PDF
    The hallmarks of sporadic Alzheimer's disease (AD) are extracellular amyloid deposits, intracellular neurofibrillary tangles (NFTs), and neuronal death. Hyperphosphorylation of tau is a key factor in the generation of NFTs. Mitogen activated protein kinase 1 (MAPK1) and protein kinase C beta (PRKCB) are thought to play a role in hyperphosphorylation, and PRCKB is thought to be involved in hypoxic stress and vascular dysfunction, and to trigger MAPK phosphorylation pathways. We performed single-cell analyses of neurons with different vulnerabilities to AD-related changes. Using quantitative PCR (qPCR), we measured the levels of MAPK1 and PRKCB transcript in CA1 (high vulnerability), CA2 pyramidal cells from the hippocampus, granule cells from the cerebellum (low vulnerability), and neurons from the brain stem (nucleus tractus spinalis nervi trigemini, characterized by early neurophysiological deficits) at progressive Braak stages compared to age-matched controls. The highly vulnerable CA1 pyramidal neurons were characterized by age- and disease-unrelated increases in PRCKB levels and by age- and disease-related increases in MAPK1 levels. In contrast, low PRKCB levels were found in CA2 pyramidal neurons, and MAPK1 levels were elevated in controls and intermediate AD stages. Both PRKCB and MAPK1 were increased in the late AD stages. MAPK1 and PRKCB levels were low in the brainstem and cerebellum. We propose that alterations in the expression of these two genes occur early in the pathogenesis of AD in a region-specific manner. In addition, multiple signal transduction pathways need to be affected to result in AD instead of physiological aging

    Associations between antimicrobial resistance in fecal Escherichia coli isolates and antimicrobial use in Canadian turkey flocks

    Get PDF
    Antimicrobial resistance (AMR) in enteric bacteria continues to be detected in turkey flocks and retail products worldwide, including in Canada. However, studies assessing linkages between on-farm antimicrobial use (AMU) and the development of AMR are lacking. This study aims to identify AMU characteristics that impact the development of AMR in the indicator bacteria Escherichia coli in turkey flocks, building on the Canadian Integrated Program for Antimicrobial Resistance Surveillance methodology for farm-level AMU and AMR data integration. Two analytic approaches were used: (1) multivariable mixed-effects logistic regression models examined associations between AMU (any route, route-specific, and route-disease-specific indication) summarized as the number of defined daily doses in animals using Canadian standards ([nDDDvetCA]/1,000 kg-animal-days at risk) and AMR and (2) multivariable mixed-effects Poisson regression models studied the linkages between AMU and the number of classes to which an E. coli isolate was resistant (nCRE. coli). A total of 1,317 E. coli isolates from a network of 16 veterinarians and 334 turkey producers across the five major turkey-producing provinces in Canada between 2016 and 2019 were used. Analysis indicated that AMR emerged with the use of related antimicrobials (e.g., tetracycline use-tetracycline resistance), however, the use of unrelated antimicrobial classes was also impacting AMR (e.g., aminoglycosides/streptogramins use-tetracycline resistance). As for studying AMU-nCRE. coli linkages, the most robust association was between the parenteral aminoglycosides use and nCRE. coli, though in-feed uses of four unrelated classes (bacitracin, folate pathway inhibitors, streptogramins, and tetracyclines) appear to be important, indicating that ongoing uses of these classes may slow down the succession from multidrug-resistant to a more susceptible E. coli populations. The analysis of AMU (route and disease-specific)-AMR linkages complemented the above findings, suggesting that treatment of certain diseases (enteric, late-stage septicemic conditions, and colibacillosis) are influential in the development of resistance to certain antimicrobial classes. The highest variances were at the flock level indicating that stewardship actions should focus on flock-level infection prevention practices. This study added new insights to our understanding of AMU-AMR linkages in turkeys and is useful in informing AMU stewardship in the turkey sector. Enhanced surveillance using sequencing technologies are warranted to explain molecular-level determinants of AMR

    Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor

    Get PDF
    The ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein biosynthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson’s disease (PD). Using solution-state nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics (MD) simulations, we find that, although the nascent chain (NC) has a highly disordered conformation, its N-terminal region shows resonance broadening consistent with interactions involving specific regions of the ribosome surface. We also investigated the effects of the ribosome-associated molecular chaperone trigger factor (TF) on αSyn structure and dynamics using resonance broadening to define a footprint of the TF–RNC interactions. We have used these data to construct structural models that suggest specific ways by which emerging NCs can interact with the biosynthesis and quality control machinery

    Antimicrobial Use and Antimicrobial Resistance Indicators—Integration of Farm-Level Surveillance Data From Broiler Chickens and Turkeys in British Columbia, Canada

    Get PDF
    Using data from the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), we aimed to describe trends in antimicrobial use (AMU) in broiler chickens and turkeys, to compare AMU across species, to compare with trends in antimicrobial resistance (AMR), and to assess the effects of various AMU/AMR units of measurement (metrics and indicators) on data integration. Data on AMU and AMR in enteric bacteria, collected from 2013 to 2017 from broiler chickens (n = 143 flocks) and turkeys (n = 145) were used. In broiler chickens, the total AMU in milligrams/population correction unit (mg/PCUBr) decreased by 6%, the number (n) of defined daily doses for animals using Canadian standards (nDDDvetCA) per 1,000 broiler chicken-days decreased by 12%, and nDDDvetCA/PCU decreased by 6%. In turkeys, the mg/PCUTk decreased by 1%, whereas the nDDDvetCA/1,000 turkey-days and the nDDDvetCA/PCU increased by 1 and 5%, respectively. The types of antimicrobial classes used in both species were similar. Using the frequency of flocks reporting use (i.e., number of flocks reporting use/number of flocks participating) as a measurement, the use of certain antimicrobials changed over time (e.g., Broilers, decreased cephalosporin use, virginiamycin use, emerging use of lincomycin-spectinomycin, and avilamycin; Turkeys: increased trimethoprim-sulfonamides and macrolide use). The trends in resistance to specific antimicrobials paralleled the frequency and quantity of use (e.g., ceftriaxone use decreased—ceftriaxone resistance decreased, and gentamicin use increased—gentamicin resistance increased) in some situations, but not others (decreased fluoroquinolone use—increased ciprofloxacin resistance). AMR data were summarized using the AMR indicator index (AMR Ix). The most notable AMR Ix trend was the decrease in ceftriaxone AMR Ix among Escherichia coli (0.19 to 0.07); indicative of the success of the poultry industry action to eliminate the preventive use of third generation cephalosporins. Other trends observed were the increase in ciprofloxacin AMR Ix among Campylobacter from 0.23 to 0.41 and gentamicin AMR Ix among E. coli from 0.11 to 0.22, suggestive of the persistence/emergence of resistance related to previous and current AMU not captured in our surveillance timeframe. These data highlight the necessity of multiple AMU and AMR indicators for monitoring the impact of stewardship activities and interventions
    corecore