357 research outputs found

    The new two-way street of Chinese direct investment in the European Union

    Get PDF
    In the light of growing trade and investment flows, the investment relationship between the European Union (EU) and China needs to be revisited. Chinese firms face significant barriers in entering and operating in the European market whilst the European economy needs more investment. Support for investment may be crucial for both the EU and China to improve economic growth. The prospective International Investment Agreement (IIA) seeks to achieve this goal. This paper focuses on Chinese inward foreign direct investment into the EU and on the potential for generating greater mutual EU–China flows, improved market access and investor protection under the IIA

    Essential role for CD103 in the T cell–mediated regulation of experimental colitis

    Get PDF
    The integrin CD103 is highly expressed at mucosal sites, but its role in mucosal immune regulation remains poorly understood. We have analyzed the functional role of CD103 in intestinal immune regulation using the T cell transfer model of colitis. Our results show no mandatory role for CD103 expression on T cells for either the development or CD4+CD25+ regulatory T (T reg) cell–mediated control of colitis. However, wild-type CD4+CD25+ T cells were unable to prevent colitis in immune-deficient recipients lacking CD103, demonstrating a nonredundant functional role for CD103 on host cells in T reg cell–mediated intestinal immune regulation. Non–T cell expression of CD103 is restricted primarily to CD11chighMHC class IIhigh dendritic cells (DCs). This DC population is present at a high frequency in the gut-associated lymphoid tissue and appears to mediate a distinct functional role. Thus, CD103+ DCs, but not their CD103− counterparts, promoted expression of the gut-homing receptor CCR9 on T cells. Conversely, CD103− DCs promoted the differentiation of IFN-γ–producing T cells. Collectively, these data suggest that CD103+ and CD103− DCs represent functionally distinct subsets and that CD103 expression on DCs influences the balance between effector and regulatory T cell activity in the intestine

    Dendritic cell subsets in the intestinal lamina propria: ontogeny and function

    Get PDF
    The intestinal mucosa is exposed to large amounts of foreign antigen (Ag) derived from commensal bacteria, dietary Ags, and intestinal pathogens. Dendritic cells (DCs) are believed to be involved in the induction of tolerance to harmless Ags and in mounting protective immune responses to pathogens and, as such, to play key roles in regulating intestinal immune homeostasis. The characterization of classical DCs (cDCs) in the intestinal lamina propria has been under intense investigation in recent years but the use of markers (including CD11c, CD11b, MHC class II), which are also expressed by intestinal MΦs, has led to some controversy regarding their definition. Here we review recent studies that help to distinguish cDCs subsets from monocyte-derived cells in the intestinal mucosa. We address the phenotype and ontogeny of these cDC subsets and highlight recent findings indicating that these subsets play distinct roles in the regulation of mucosal immune responses in vivo

    Assessing the Role of CD103 in Immunity to an Intestinal Helminth Parasite

    Get PDF
    In the intestine, the integrin CD103 is expressed on a subset of T regulatory (T(reg)) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103(+) DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c(+) DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103(-/-)) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103(-/-) mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4(+)CD25(+)Foxp3(+) T(reg) cells in the mLN or LP.These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or T(reg) recruitment or retention within the large intestine

    Transplantation tolerance: lessons from experimental rodent models

    Get PDF
    Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models

    Sex impacts Th1 cells, Tregs, and DCs in both intestinal and systemic immunity in a mouse strain and location-dependent manner

    Get PDF
    Background: Males and females have a different predisposition for the development of intestinal disorders, like inflammatory bowel disease (IBD). We hypothesized that sex specific differences in intestinal immune responses may underlie this bias. To test this hypothesis, we studied sex differences in immune cell populations in the Peyer's patches (PP). For comparison with systemic immunity, we studied spleen cells. Methods: Two mouse strains with different susceptibility for developing colitis (BALB/c and C57Bl/6) were used. Using flow cytometry, we measured the percentage of T cells, Th1, Th17, and Treg cells in the PP and spleen. In addition, we measured the percentages of NK cells, macrophages, myeloid, and lymphoid dendritic cells (DCs) and their expression of CD80 and CD103. Moreover, we measured percentages of monocyte subsets in the peripheral circulation. Results were tested using two-way ANOVA, p <0.05. Results: Males had a lower percentage of T cells in both PP and spleen (PP BALB/c 22.1 %, B6 13.6 %; spleen BALB/c 4.7 %, B6 19.9 %) but a higher percentage of Th1 cell in both tissues (PP BALB/c 350 %, B6 109.5 %; spleen BALB/c 48.7 %, B6 41.9 %) than females. They also had a higher percentage of Tregs in the spleen than females (BALB/c 20.5 %, B6 4.5 %). Furthermore, males had a higher percentage of CD80(+) DCs in both the PP and spleen (lymphoid DCs in PP BALB/c 104.7 %, B6 29.6 %; spleen BALB/c 72.2 %, B6 44.2 %; myeloid DCs in PP BALB/c 80.5 %, B6 93.3 %; spleen BALB/c 88.5 %, B6 50.8 %) and a higher percentage of lymphoid CD103(+) DCs in the spleen than females (BALB/c 41.5 %, B6 28.3 %). The percentage of NK cells was decreased in the spleen (BALB/c 12.5 %, B6 25.1 %) but increased in the PP (BALB/c 75.7 %, B6 78.6 %) of males as compared with females. Strain differences were also found in the PP; BALB/c mice had a higher percentage of T cells (males 58.1 %, females 75.5 %), a higher Th/Tc ratio (males 81.0 %, females 134.2 %), less FoxP3(+)CD25(-) T cells (males 14.6 %, females 30.0 %), more DCs (males 14.8 %, females 15.7 %) and macrophages (males 67.9 %, females 141.2 %), and more NK cells (males 160 %, females 164.3 %) than BALB/c mice. Conclusions: In this study, we show sex differences in intestinal and peripheral immune populations. These differences may underlie sex differences in intestinal disorders like IBD, and this information may be an important knowledge for the treatment of intestinal-related diseases

    Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells

    Get PDF
    Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α(+) conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3(−/−) mice also lack CD103(+)CD11b(−) DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3(−/−) mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103(+)CD11b(−) DCs, with the population of CD103(+)CD11b(+) DCs remaining intact. Batf3(−/−) mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103(+) DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α(+) cDCs and nonlymphoid CD103(+) DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α(+) cDCs and nonlymphoid CD103(+) DCs

    Regulatory T Cells in γ Irradiation-Induced Immune Suppression

    Get PDF
    Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies
    corecore