49 research outputs found
Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8
Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.</p
Intraneuronal Aβ immunoreactivity is not a predictor of brain amyloidosis-β or neurofibrillary degeneration
Amyloid β (Aβ) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer’s disease to determine if intraneuronal Aβ immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Aβ immunoreactivity in neurons in infants and stable neuron-type specific Aβ immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4–13 aa and 8–17 aa of Aβ in neurons indicated that intraneuronal Aβ was mainly a product of α- and γ-secretases (Aβ(17–40/42)). The presence of N-terminally truncated Aβ(17–40) and Aβ(17–42) in the control brains was confirmed by Western blotting and the identity of Aβ(17–40) was confirmed by mass spectrometry. The prevalence of products of α- and γ -secretases in neurons and β- and γ-secretases in plaques argues against major contribution of Aβ-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Aβ(17–42) immunoreactivity was observed in structures with low susceptibility to fibrillar Aβ deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Aβ immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Aβ immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Aβ represents a product of normal neuronal metabolism
Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009
The origin and evolution of the Moon remain controversial 1,2, with one of the most important questions for lunar evolution being the timing and duration of basaltic (mare) magmatism1,3–8. Here we report the result of ion microprobe U–Pb dating of phosphates in a lunar meteorite, Kalahari 009, which is classified as a very-low-Ti mare-basalt breccia. In situ analyses of five phosphate grains, associated with basaltic clasts, give an age of 4.3560.15 billion years. These ancient phosphate ages are thought to represent the crystallization ages of parental basalt magma, making Kalahari 009 one of the oldest known mare basalts. We suggest that mare basalt volcanism on the Moon started as early as 4.35 Gyr ago, relatively soon after its formation and differentiation, and preceding the bulk of lunar volcanism which ensued after the late heavy bombardment around 3.8-3.9 Gyr (refs 7 and 8). Considering the extremely low abundances of incompatible elements such as thorium and the rare earth elements in Kalahari 009 (ref. 9) and recent remote-sensing observations illustrating that the cryptomaria tend to be of very-low-Ti basalt type10–12, we conclude that Kalahari 009 is our first sample of a very-low-Ti cryptomare from the Moon
Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development
The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues
Recommended from our members
Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8.
Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation