1,251 research outputs found

    Scanning Electron Microscopic Analysis of Intraocular Ossification in Advanced Retinal Disease

    Get PDF
    Chicken eyes from congenic blind (rd/rd) animals showing early, intermediate, and final stages of ossification, similar to the phthisis bulbi condition in man, were examined using scanning and transmission electron microscopy as well as light microscopy and X-ray microanalysis. Early stages of ossification were devoid of mineralized calcium apatite while intermediate and end stages of the disorder contained large amounts of calcium and phosphorus. This process resulted in metaplastic bone formation. An intact Bruch\u27s membrane appeared to separate the choroid from the degenerated pigment epithelium and the developing bone suggesting that its possible origin was metaplasia of the retinal pigment epithelium and the degenerated sensory retina. The end-stage ossification resulted in phthisic bone formation which completely filled the vitreous cavity in a manner very similar to the human condition of phthisis bulbi

    The Environmental Dependence of the Infrared Luminosity and Stellar Mass Functions

    Get PDF
    We investigate the dependence of the galaxy infrared luminosity function (LF) and the associated stellar mass function (SMF) on environment and spectral type using photometry from the Two Micron All Sky Survey and redshifts from the Las Campanas Redshift Survey for galaxies brighter than M_J<-19+5 log h. In the field environment, galaxies with emission lines have LFs with much steeper faint end slopes (alpha_J=-1.39) than galaxies without emission lines (alpha_J=-0.59). In the cluster environment, however, even the non-emission line galaxies have a steep faint-end LF (alpha_J=-1.22). There is also a significant (95%) difference between the overall cluster and field LFs, ΔαJ=0.34,ΔMJ=0.54\Delta \alpha_J=-0.34, \Delta M_J^\ast=-0.54. All of these variations are more pronounced in the SMFs, which we compute by relating the strength of the 4000 A break in the optical spectra to a mass-to-light ratio.Comment: 14 pages, 13 figures, emulateapj style ApJ, post-referee. Very minor changes, mostly typographical in natur

    Inter-laboratory analysis of cereal beta-glucan extracts of nutritional importance : An evaluation of different methods for determining weight-average molecular weight and molecular weight distribution

    Get PDF
    In an interlaboratory study we compare different methods to determine the weight-average molecular weight (Mw) and molecular weight distribution of six cereal beta-glucan isolates of nutritional importance. Size exclusion chromatography (SEC) with multi-angle light scattering (MALS), capillary viscometry, sedimentation velocity analytical ultracentrifugation and one asymmetric flow field-flow fractionation (AF4)-MALS method all yielded similar Mw values for mostly individual chains of dissolved beta-glucan molecules. SEC with post-column calcofluor detection underestimated the Mw of beta-glucan > 500 x 10(3) g/mol. The beta-glucan molecules analysed by these methods were primarily in a random coil conformation as evidenced from individual MarkHouwink-Kuhn-Sakurada (MHKS) scaling coefficients between 0.5 and 0.6 and Wales-Van Holde ratios between 1.4 and 1.7. In contrast, a second AF4-MALS method yielded much larger Mw values for these same samples indicating the presence and detection of beta-glucan aggregates. Storage of the six beta-glucan solutions in the dark at 4 C for 4 years revealed them to be stable. This suggests an absence of storage-induced irreversible aggregation phenomena or chain-scission. Shear forces in SEC and the viscometer capillary and hydrostatic pressure in analytical ultracentrifugation probably led to the reversable dissociation of beta-glucan aggregates into molecularly dissolved species. Thus, all these methods yield true weight-average molecular weight values not biased by the presence of aggregates as was the case in one of the AF4 based methods employed.Peer reviewe

    Regulation of Extracellular Matrix Organization by BMP Signaling in Caenorhabditis elegans

    Get PDF
    In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle

    Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs)

    Get PDF
    We report the transmission electron microscopy (TEM) imaging of a hydrogel-based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that clearly displays molecularly imprinted cavities, ranging from 5-50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase

    Horizontal, Anomalous U(1) Symmetry for the More Minimal Supersymmetric Standard Model

    Get PDF
    We construct explicit examples with a horizontal, ``anomalous'' U(1)U(1) gauge group, which, in a supersymmetric extension of the standard model, reproduce qualitative features of the fermion spectrum and CKM matrix, and suppress FCNC and proton decay rates without the imposition of global symmetries. We review the motivation for such ``more'' minimal supersymmetric standard models and their predictions for the sparticle spectrum. There is a mass hierarchy in the scalar sector which is the inverse of the fermion mass hierarchy. We show in detail why DeltaS = 2 FCNC are suppressed when compared with naive estimates for nondegenerate squarks.Comment: Revised version clarifies calculation of FCNC amplitudes and rules out one model considered previousl

    R Symmetry Breaking Versus Supersymmetry Breaking

    Full text link
    We point out a connection between R symmetry and \susy\ breaking. We show that the existence of an R symmetry is a necessary condition for \susy\ breaking and a spontaneously broken R symmetry is a sufficient condition provided two conditions are satisfied. These conditions are: {\it genericity}, \ie\ the effective Lagrangian is a generic Lagrangian consistent with the symmetries of the theory (no fine tuning), and {\it calculability}, \ie\ the low energy theory can be described by a supersymmetric Wess-Zumino effective Lagrangian without gauge fields. All known models of dynamical supersymmetry breaking possess such a spontaneously broken R symmetry and therefore contain a potentially troublesome axion. However, we use the fact that genericity is {\it not} a feature of supersymmetric theories, even when nonperturbative renormalization is included, to show that the R symmetry can in many cases be explicitly broken without restoring supersymmetry and so the axion can be given an acceptably large mass.Comment: 20 pages, UCSD/PTH 93-27, RU-93-4

    Cosmological Implications of Dynamical Supersymmetry Breaking

    Full text link
    We provide a taxonomy of dynamical supersymmetry breaking theories, and discuss the cosmological implications of the various types of models. Models in which supersymmetry breaking is produced by chiral superfields which only have interactions of gravitational strength (\eg\ string theory moduli) are inconsistent with standard big bang nucleosynthesis unless the gravitino mass is greater than \CO(3) \times 10^4 GeV. This problem cannot be solved by inflation. Models in which supersymmetry is dynamically broken by renormalizable interactions in flat space have no such cosmological problems. Supersymmetry can be broken either in a hidden or the visible sector. However hidden sector models suffer from several naturalness problems and have difficulties in producing an acceptably large gluino mass.Comment: 24 pages (uses harvmac) UCSD/PTH 93-26, RU-3

    Delays in Leniency Application: Is There Really a Race to the Enforcer's Door?

    Get PDF
    This paper studies cartels’ strategic behavior in delaying leniency applications, a take-up decision that has been ignored in the previous literature. Using European Commission decisions issued over a 16-year span, we show, contrary to common beliefs and the existing literature, that conspirators often apply for leniency long after a cartel collapses. We estimate hazard and probit models to study the determinants of leniency-application delays. Statistical tests find that delays are symmetrically affected by antitrust policies and macroeconomic fluctuations. Our results shed light on the design of enforcement programs against cartels and other forms of conspiracy
    corecore