11 research outputs found

    Arachnoid cysts do not contain cerebrospinal fluid: A comparative chemical analysis of arachnoid cyst fluid and cerebrospinal fluid in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arachnoid cyst (AC) fluid has not previously been compared with cerebrospinal fluid (CSF) from the same patient. ACs are commonly referred to as containing "CSF-like fluid". The objective of this study was to characterize AC fluid by clinical chemistry and to compare AC fluid to CSF drawn from the same patient. Such comparative analysis can shed further light on the mechanisms for filling and sustaining of ACs.</p> <p>Methods</p> <p>Cyst fluid from 15 adult patients with unilateral temporal AC (9 female, 6 male, age 22-77y) was compared with CSF from the same patients by clinical chemical analysis.</p> <p>Results</p> <p>AC fluid and CSF had the same osmolarity. There were no significant differences in the concentrations of sodium, potassium, chloride, calcium, magnesium or glucose. We found significant elevated concentration of phosphate in AC fluid (0.39 versus 0.35 mmol/L in CSF; <it>p </it>= 0.02), and significantly reduced concentrations of total protein (0.30 versus 0.41 g/L; <it>p </it>= 0.004), of ferritin (7.8 versus 25.5 ug/L; <it>p </it>= 0.001) and of lactate dehydrogenase (17.9 versus 35.6 U/L; <it>p </it>= 0.002) in AC fluid relative to CSF.</p> <p>Conclusions</p> <p>AC fluid is not identical to CSF. The differential composition of AC fluid relative to CSF supports secretion or active transport as the mechanism underlying cyst filling. Oncotic pressure gradients or slit-valves as mechanisms for generating fluid in temporal ACs are not supported by these results.</p

    Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM.

    No full text
    In the present study, we aimed to discover cerebrospinal fluid (CSF) proteins with significant abundance difference between early multiple sclerosis patients and controls, and do an initial verification of these proteins using selected reaction monitoring (SRM). iTRAQ and Orbitrap MS were used to compare the CSF proteome of patients with clinically isolated syndrome (CIS) (n=5), patients with relapsing-remitting multiple sclerosis that had CIS at the time of lumbar puncture (n=5), and controls with other inflammatory neurological disease (n=5). Of more than 1200 identified proteins, five proteins were identified with significant abundance difference between the patients and controls. In the initial verification using SRM we analyzed a larger patient and control cohort (n=132) and also included proteins reported as differentially abundant in multiple sclerosis in the literature. We found significant abundance difference for 11 proteins after verification, of which the five proteins alpha-1-antichymotrypsin, contactin-1, apolipoprotein D, clusterin, and kallikrein-6 were significantly differentially abundant in several of the group comparisons. This initial study form the basis for further biomarker verification studies in even larger sample cohorts, to determine if these proteins have relevance as diagnostic or prognostic biomarkers for multiple sclerosis

    Label free analysis of human cerebrospinal fluid addressing various normalization strategies and revealing protein groups affected by multiple sclerosis.

    No full text
    The aims of the study was to: (1) identify differentially regulated proteins in cerebrospinal fluid (CSF) between multiple sclerosis (MS) patients and non-MS controls; (2) examine the effect of matching the CSF samples on either total protein amount or volume, and compare four protein normalization strategies for CSF protein quantification. CSF from MS patients (n = 37) and controls (n = 64), consisting of other non-inflammatory neurological diseases (n = 50) and non- neurological spinal anesthetic subjects (n = 14), were analyzed using label free proteomics, quantifying almost 800 proteins. In total, 122 proteins were significantly regulated (p 0.75. Hierarchical clustering indicated that there were two main groups of MS patients, those with increased levels of inflammatory response proteins and decreased levels of proteins involved in neuronal tissue development (n = 30), and those with normal protein levels for both of these protein groups (n = 7). The main subgroup of controls clustering with the MS patients showing increased inflammation and decreased neuronal tissue development were patients suffering from chronic fatigue. Our data indicate that the preferable way to quantify proteins in CSF is to first match the samples on total protein amount and then normalize the data based on the median intensities, preferably from the CNS-enriched proteins. This article is protected by copyright. All rights reserved

    Cerebrospinal fluid proteomics in multiple sclerosis

    No full text
    corecore