78 research outputs found

    Localised transmission hotspots of a typhoid fever outbreak in the Democratic Republic of Congo

    Get PDF
    Introduction: in a semi-urban setting in the Democratic Republic of Congo, this study aims to understand the dynamic of a typhoid fever (TF) outbreak and to assess: a) the existence of hot spots for TF transmission and b) the difference between typhoid cases identified within those hot spots and the general population in relation to socio-demographic characteristics, sanitation practice, and sources of drinking water.  Methods: this was a retrospective analysis of TF outbreaks in 2011 in Kikwit, DRC using microbiological analysis of water sources and a structured interview questionnaire.  Results: there were a total of 1430 reported TF cases. The outbreak’s epidemic curve shows earliest and highest peak attack rates (AR) in three military camps located in Kikwit (Ebeya 3.2%; Ngubu 3.0%; and Nsinga 2.2%) compared to an average peak AR of 0.6% in other affected areas. A total 320 cases from the military camps and the high burden health areas were interviewed. Typhoid cases in the military camps shared a latrine with more than one family (P<0.02). All tap water sources in both the military camps and general population were found to be highly contaminated with faecal coliforms.  Conclusion: the role of military camps in Kikwit as early hotspots of TF transmission was likely associated with lower sanitary and hygiene conditions. The proximity of camps to the general population might have been responsible for disseminating TF to the general population. Mapping of cases during an outbreak could be crucial to identify hot spots for transmission and institute corrective measures

    Design and analysis considerations in the Ebola_Tx trial evaluating convalescent plasma in the treatment of Ebola virus disease in Guinea during the 2014-2015 outbreak.

    Get PDF
    The Ebola virus disease outbreak in 2014-2015 led to a huge caseload with a high case fatality rate. No specific treatments were available beyond supportive care for conditions such as dehydration and shock. Evaluation of treatment with convalescent plasma from Ebola survivors was identified as a priority. We evaluated this intervention in an emergency setting, where randomization was unacceptable. The original trial design was an open-label study comparing patients receiving convalescent plasma and supportive care to patients receiving supportive care alone. The comparison group comprised patients recruited at the start of the trial before convalescent plasma became available, as well as patients presenting during the trial for whom there was insufficient blood group-compatible plasma or no staffing capacity to provide additional transfusions. However, during the trial, convalescent plasma was available to treat all new patients. The design was changed to use a comparator group comprising patients previously treated at the same Ebola treatment center prior to the start of the trial. In the analysis, it was planned to adjust for any differences in prognostic variables between intervention and comparison groups, specifically baseline polymerase chain reaction cycle threshold and age. In addition, adjustment was planned for other potential confounders, identified in the analysis, such as patient presenting symptoms and time to treatment seeking. Because plasma treatment started up to 3 days after diagnosis and we could not define a similar time-point for the comparator group, patients who died before the third day after confirmation of diagnosis were excluded from both intervention and comparison groups in a per-protocol analysis. Some patients received additional experimental treatments soon after plasma treatment, and these were excluded. We also analyzed mortality including all patients from the time of confirmed diagnosis, irrespective of whether those in the trial series actually received plasma, as an intention-to-treat analysis. Per-protocol and intention-to-treat approaches gave similar conclusions. An important caveat in the interpretation of the findings is that it is unlikely that all potential sources of confounding, such as any variation in supportive care over time, were eliminated. Protocols and electronic data capture systems have now been extensively field-tested for emergency evaluation of treatment with convalescent plasma. Ongoing studies seek to quantify the level of neutralizing antibodies in different plasma donations to determine whether this influences the response and survival of treated patients

    Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea.

    Get PDF
    BACKGROUND: In the wake of the recent outbreak of Ebola virus disease (EVD) in several African countries, the World Health Organization prioritized the evaluation of treatment with convalescent plasma derived from patients who have recovered from the disease. We evaluated the safety and efficacy of convalescent plasma for the treatment of EVD in Guinea. METHODS: In this nonrandomized, comparative study, 99 patients of various ages (including pregnant women) with confirmed EVD received two consecutive transfusions of 200 to 250 ml of ABO-compatible convalescent plasma, with each unit of plasma obtained from a separate convalescent donor. The transfusions were initiated on the day of diagnosis or up to 2 days later. The level of neutralizing antibodies against Ebola virus in the plasma was unknown at the time of administration. The control group was 418 patients who had been treated at the same center during the previous 5 months. The primary outcome was the risk of death during the period from 3 to 16 days after diagnosis with adjustments for age and the baseline cycle-threshold value on polymerase-chain-reaction assay; patients who had died before day 3 were excluded. The clinically important difference was defined as an absolute reduction in mortality of 20 percentage points in the convalescent-plasma group as compared with the control group. RESULTS: A total of 84 patients who were treated with plasma were included in the primary analysis. At baseline, the convalescent-plasma group had slightly higher cycle-threshold values and a shorter duration of symptoms than did the control group, along with a higher frequency of eye redness and difficulty in swallowing. From day 3 to day 16 after diagnosis, the risk of death was 31% in the convalescent-plasma group and 38% in the control group (risk difference, -7 percentage points; 95% confidence interval [CI], -18 to 4). The difference was reduced after adjustment for age and cycle-threshold value (adjusted risk difference, -3 percentage points; 95% CI, -13 to 8). No serious adverse reactions associated with the use of convalescent plasma were observed. CONCLUSIONS: The transfusion of up to 500 ml of convalescent plasma with unknown levels of neutralizing antibodies in 84 patients with confirmed EVD was not associated with a significant improvement in survival. (Funded by the European Union's Horizon 2020 Research and Innovation Program and others; ClinicalTrials.gov number, NCT02342171.)

    Seroprevalence of transfusion-transmissible infections and evaluation of the pre-donation screening performance at the Provincial Hospital of Tete, Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The World Health Organization recommends universal and quality-controlled screening of blood donations for the major transfusion-transmissible infections (TTIs): human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis. The study objectives were to determine the seroprevalence of these TTIs among blood donors at the Provincial Hospital of Tete, Mozambique, and to assess the local pre-donation screening performance.</p> <p>Methods</p> <p>All consenting voluntary and replacement candidate blood donors were consecutively included from February to May 2009. Sera of all candidates, independent of deferral by questionnaire, were submitted to screening with quality-assured rapid or simple assays for HIV, HBV surface antigen (HBsAg), HCV and syphilis. Assays locally used by the blood bank for HBV and syphilis screening were run in parallel to quality-assured external assays supplied during the study, and all discordant samples were submitted to confirmation testing in reference laboratories in Mozambique and Belgium.</p> <p>Results</p> <p>Of 750 consenting candidates (50.5% of voluntary donors), 71 (9.5%) were deferred by the questionnaire, including 38 specifically because of risk behavior for TTI. Of the 679 non-deferred candidates, 127 (18.7%) had serological confirmation of at least one TTI, with a lower prevalence in voluntary than in replacement donors (15.2% versus 22.4%, p = 0.016). Seroprevalence of HIV, HBsAg and syphilis infections was 8.5%, 10.6 % and 1.2%. No confirmed HCV infection was found. Seroprevalence of TTIs was similar in the 38 candidates deferred for TTI risk as in the non-deferred group, except for HBsAg (26.3 % versus 10.6 %; p = 0.005). The local assays used for HBV and syphilis had sensitivities of 98.4% and 100% and specificities of 80.4% and 98.8% respectively. This resulted in the rejection of 110 of the 679 blood donations (16.2%) because of false positive results.</p> <p>Conclusions</p> <p>The seroprevalence of TTIs after questionnaire screening is high in Tete, Mozambique, but HCV infection does not appear as a major issue. The questionnaire did not exclude effectively HIV-infected donor candidates, while the locally used assays led to unnecessary rejection of many safe donations. A contextualized questionnaire and consistent use of quality-assured assays would considerably improve the current screening procedure for blood donation.</p

    Prozone in malaria rapid diagnostics tests: how many cases are missed?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prozone means false-negative or false-low results in antigen-antibody reactions, due to an excess of either antigen or antibody. The present study prospectively assessed its frequency for malaria rapid diagnostic tests (RDTs) and <it>Plasmodium falciparum </it>samples in an endemic field setting.</p> <p>Methods</p> <p>From January to April 2010, blood samples with <it>P. falciparum </it>high parasitaemia (≥ 4% red blood cells infected) were obtained from patients presenting at the Provincial Hospital of Tete (Mozambique). Samples were tested undiluted and 10-fold diluted in saline with a panel of RDTs and results were scored for line intensity (no line visible, faint, weak, medium and strong). Prozone was defined as a sample which showed no visible test line or a faint or weak test line when tested undiluted, and a visible test line of higher intensity when tested 10-fold diluted, as observed by two blinded observers and upon duplicate testing.</p> <p>Results</p> <p>A total of 873/7,543 (11.6%) samples showed <it>P. falciparum</it>, 92 (10.5%) had high parasitaemia and 76 were available for prozone testing. None of the two Pf-pLDH RDTs, but all six HRP-2 RDTs showed prozone, at frequencies between 6.7% and 38.2%. Negative and faint HRP-2 lines accounted for four (3.8%) and 15 (14.4%) of the 104 prozone results in two RDT brands. For the most affected brand, the proportions of prozone with no visible or faint HRP-2 lines were 10.9% (CI: 5.34-19.08), 1.2% (CI: 0.55-2.10) and 0.1% (CI: 0.06-0.24) among samples with high parasitaemia, all positive samples and all submitted samples respectively. Prozone occurred mainly, but not exclusively, among young children.</p> <p>Conclusion</p> <p>Prozone occurs at different frequency and intensity in HRP-2 RDTs and may decrease diagnostic accuracy in the most affected RDTs.</p

    Rational use of Xpert testing in patients with presumptive TB: clinicians should be encouraged to use the test-treat threshold

    No full text
    Abstract Background A recently published Ugandan study on tuberculosis (TB) diagnosis in HIV-positive patients with presumptive smear-negative TB, which showed that out of 90 patients who started TB treatment, 20% (18/90) had a positive Xpert MTB/RIF (Xpert) test, 24% (22/90) had a negative Xpert test, and 56% (50/90) were started without Xpert testing. Although Xpert testing was available, clinicians did not use it systematically. Here we aim to show more objectively the process of clinical decision-making. First, we estimated that pre-test probability of TB, or the prevalence of TB in smear-negative HIV infected patients with signs of presumptive TB in Uganda, was 17%. Second, we argue that the treatment threshold, the probability of disease at which the utility of treating and not treating is the same, and above which treatment should be started, should be determined. In Uganda, the treatment threshold was not yet formally established. In Rwanda, the calculated treatment threshold was 12%. Hence, one could argue that the threshold was reached without even considering additional tests. Still, Xpert testing can be useful when the probability of disease is above the treatment threshold, but only when a negative Xpert result can lower the probability of disease enough to cross the treatment threshold. This occurs when the pre-test probability is lower than the test-treat threshold, the probability of disease at which the utility of testing and the utility of treating without testing is the same. We estimated that the test-treatment threshold was 28%. Finally, to show the effect of the presence or absence of arguments on the probability of TB, we use confirming and excluding power, and a log10 odds scale to combine arguments. Conclusion If the pre-test probability is above the test-treat threshold, empirical treatment is justified, because even a negative Xpert will not lower the post-test probability below the treatment threshold. However, Xpert testing for the diagnosis of TB should be performed in patients for whom the probability of TB was lower than the test-treat threshold. Especially in resource constrained settings clinicians should be encouraged to take clinical decisions and use scarce resources rationally

    Hepatitis B and C co-infection among HIV-infected adults while on antiretroviral treatment: long-term survival, CD4 cell count recovery and antiretroviral toxicity in Cambodia.

    Get PDF
    BACKGROUND: Despite the high burden, there is a dearth of (long-term) outcome data of hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infected patients receiving antiretroviral treatment (ART) in a clinical setting in resource-constrained settings, particularly from Asia. METHODS: We conducted a retrospective cohort study including all adults initiating standard ART (non-tenofovir-based) between 03/2003 and 09/2012. HBV infection was diagnosed by HBV surface antigen detection. HCV diagnosis relied on antibody detection. The independent effect of HBV and HCV on long-term (≥5 years) ART response in terms of mortality (using Cox regression), severe livertoxicity (using logistic regression) and CD4 count increase (using mixed-effects modelling) was determined. RESULTS: A total of 3089 adults were included (median age: 35 years (interquartile range 30-41); 46% male), of whom 341 (11.0%) were co-infected with HBV and 163 (5.3%) with HCV. Over a median ART follow-up time of 4.3 years, 240 individuals died. Mortality was 1.6 higher for HBV co-infection in adjusted analysis (P = 0.010). After the first year of ART, the independent mortality risk was 3-fold increased in HCV co-infection (P = 0.002). A total of 180 (5.8%) individuals discontinued efavirenz or nevirapine due to severe livertoxicity, with an independently increased risk for HBV (hazard ratio (HR) 2.3; P<0.001) and HCV (HR 2.8; P<0.001). CD4 recovery was lower in both HBV and HCV co-infection but only statistically significant for HBV (P<0.001). DISCUSSION: HBV and HCV co-infection was associated with worse ART outcomes. The effect of early ART initiation and providing effective treatment for hepatitis co-infection should be explored

    Characteristics of medical evacuation by train in Ukraine, 2022

    No full text
    IMPORTANCE The 2022 war in Ukraine severely affected access to health care for patients in the conflict-affected regions and limited options for medical evacuation. Air transport, a common method of medical evacuation in war zones, was unsafe due to the conflict of 2 modernized military forces that were in possession of aircraft and surface-to-air weapons; therefore, Medecins Sans Frontieres, in collaboration with the Ukrainian railway company and Ukrainian health agencies, addressed this by initiating medical evacuation via medically customized trains. OBJECTIVE To describe the implementation of medical evacuation trains aimed at improving the access to health care for war-affected patients. DESIGN, SETTING, AND PARTICIPANTS This case series describes the remodeling of 2 trains used for medical evacuation in a conflict zone during the war in Ukraine. The study was conducted from March 30 to November 30, 2022. One train had minimal adjustments and could be rapidly deployed to address the most pressing humanitarian needs, while the other underwent major structural modifications to provide intensive care capacity. The report details the medical capabilities of the trains, the organization of referrals, and operational challenges encountered. Additionally, it includes a case series on the characteristics of patients transported in the initial 8 months, based on routinely collected programmatic descriptive data of all patients transported by the medical trains. RESULTS In 8 months, 2481 patients (male-female ratio, 1.07; male, 1136 [46%]; female 1058 [43%]; missing data, 287 [12%]; median age, 63 years [range, 0-98 years]) were evacuated from 11 cities near the Ukrainian conflict frontline to safer areas. Initially, the trains predominantly evacuated trauma patients, but over the course of the war, the patient characteristics changed with more medical and nonacute conditions, and fewer trauma patients. The main reason for entry into the intensive care unit train carriage was for close monitoring and observation, and the main interventions performed were primarily for respiratory failure. CONCLUSIONS AND RELEVANCE The findings of this study suggest that medical evacuation in a war zone by converted trains is possible and can improve access to health care for war-affected patients. The presence of intensive care capacity on board allows for transport of more severely ill or injured individuals. However, the target population should not be limited to trauma patients, as health care institutions affected host a much broader population whose needs and urgency for evacuation may change over time
    • …
    corecore