25 research outputs found

    Cardiac involvement in children with paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PIMS-TS): data from a prospective nationwide surveillance study.

    Get PDF
    BACKGROUND Paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) may occur 4 to 8 weeks after SARS-CoV-2 infection. The acute presentation of PIMS-TS has been well described, but data on longer-term outcomes, particularly cardiac, is scarce. METHODS This prospective nationwide surveillance study included children and adolescents less than 18 years of age who were hospitalised with PIMS-TS in Switzerland between March 2020 and March 2022. Data was collected from all 29 paediatric hospitals through the Swiss Paediatric Surveillance Unit (SPSU) during hospitalisation and approximately six weeks after discharge. The data was analysed after categorising the participants into three groups based on their admission status to the intensive care unit (ICU) (non-ICU, ICU-moderate) and the requirement for invasive ventilatory and/or inotropic support (ICU-severe). RESULTS Overall, 204 children were included of whom 194 (95.1%) had follow-up data recorded. Median age was 9.0 years (interquartile range [IQR] 6.0-11.5) and 142 (69.6%) were male. In total, 105/204 (51.5%) required ICU admission, of whom 55/105 (52.4%) received inotropic support and 14/105 (13.3%) mechanical ventilation (ICU-severe group). Echocardiography was performed in 201/204 (98.5%) children; 132 (64.7%) had a cardiac abnormality including left ventricular systolic dysfunction (73 [36.3%]), a coronary artery abnormality (45 [22.4%]), pericardial effusion (50 [24.9%]) and mitral valve regurgitation (60 [29.9%]). Left ventricular systolic dysfunction was present at admission in 62/201 (30.8%) children and appeared during hospitalisation in 11 (5.5%) children. A coronary artery abnormality was detected at admission in 29/201 (14.2%) children and developed during hospitalisation or at follow-up in 13 (6.5%) and 3 (1.5%) children, respectively. None of the children had left ventricular systolic dysfunction at follow-up, but a coronary abnormality and pericardial effusion were found in 12 (6.6%) and 3 (1.7%) children, respectively. School absenteeism at the time of follow-up was more frequent in children who had been admitted to the ICU (2.5% in the non-ICU group compared to 10.4% and 17.6% in the ICU-moderate and ICU-severe group, respectively) (p = 0.011). CONCLUSION Cardiac complications in children presenting with PIMS-TS are common and may worsen during the hospitalisation. Irrespective of initial severity, resolution of left ventricular systolic dysfunction is observed, often occurring rapidly during the hospitalisation. Most of the coronary artery abnormalities regress; however, some are still present at follow-up, emphasising the need for prolonged cardiac evaluation after PIMS-TS

    Sensitivity of ICD coding for sepsis in children-a population-based study.

    Get PDF
    BACKGROUND International Classification of Diseases 10th edition (ICD-10) is widely used to describe the burden of disease. AIM To describe how well ICD-10 coding captures sepsis in children admitted to the hospital with blood culture-proven bacterial or fungal infection and systemic inflammatory response syndrome. METHODS Secondary analysis of a population-based, multicenter, prospective cohort study on children with blood culture-proven sepsis of nine tertiary pediatric hospitals in Switzerland. We compared the agreement of validated study data on sepsis criteria with ICD-10 coding abstraction obtained at the participating hospitals. RESULTS We analyzed 998 hospital admissions of children with blood culture-proven sepsis. The sensitivity of ICD-10 coding abstraction was 60% (95%-CI 57-63) for sepsis; 35% (95%-CI 31-39) for sepsis with organ dysfunction, using an explicit abstraction strategy; and 65% (95%-CI 61-69) using an implicit abstraction strategy. For septic shock, the sensitivity of ICD-10 coding abstraction was 43% (95%-CI 37-50). Agreement of ICD-10 coding abstraction with validated study data varied by the underlying infection type and disease severity (p < 0.05). The estimated national incidence of sepsis, inferred from ICD-10 coding abstraction, was 12.5 per 100,000 children (95%-CI 11.7-13.5) and 21.0 per 100,000 children (95%-CI 19.8-22.2) using validated study data. CONCLUSIONS In this population-based study, we found a poor representation of sepsis and sepsis with organ dysfunction by ICD-10 coding abstraction in children with blood culture-proven sepsis when compared against a prospective validated research dataset. Sepsis estimates in children based on ICD-10 coding may thus severely underestimate the true prevalence of the disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s44253-023-00006-1

    Sensitivity of ICD coding for sepsis in children-a population-based study

    Full text link
    BACKGROUND International Classification of Diseases 10th edition (ICD-10) is widely used to describe the burden of disease. AIM To describe how well ICD-10 coding captures sepsis in children admitted to the hospital with blood culture-proven bacterial or fungal infection and systemic inflammatory response syndrome. METHODS Secondary analysis of a population-based, multicenter, prospective cohort study on children with blood culture-proven sepsis of nine tertiary pediatric hospitals in Switzerland. We compared the agreement of validated study data on sepsis criteria with ICD-10 coding abstraction obtained at the participating hospitals. RESULTS We analyzed 998 hospital admissions of children with blood culture-proven sepsis. The sensitivity of ICD-10 coding abstraction was 60% (95%-CI 57-63) for sepsis; 35% (95%-CI 31-39) for sepsis with organ dysfunction, using an explicit abstraction strategy; and 65% (95%-CI 61-69) using an implicit abstraction strategy. For septic shock, the sensitivity of ICD-10 coding abstraction was 43% (95%-CI 37-50). Agreement of ICD-10 coding abstraction with validated study data varied by the underlying infection type and disease severity (p < 0.05). The estimated national incidence of sepsis, inferred from ICD-10 coding abstraction, was 12.5 per 100,000 children (95%-CI 11.7-13.5) and 21.0 per 100,000 children (95%-CI 19.8-22.2) using validated study data. CONCLUSIONS In this population-based study, we found a poor representation of sepsis and sepsis with organ dysfunction by ICD-10 coding abstraction in children with blood culture-proven sepsis when compared against a prospective validated research dataset. Sepsis estimates in children based on ICD-10 coding may thus severely underestimate the true prevalence of the disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s44253-023-00006-1

    Organ Dysfunction in Children With Blood Culture-Proven Sepsis: Comparative Performance of Four Scores in a National Cohort Study.

    Get PDF
    OBJECTIVES Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction. DESIGN We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015. SETTING Emergency departments, wards, and PICUs in 10 tertiary children's hospitals in Switzerland. PATIENTS Children younger than 17 years old with blood culture-proven sepsis. We excluded preterm infants and term infants younger than 7 days old. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We compared the 2005 International Pediatric Sepsis Consensus Conference (IPSCC), Pediatric Logistic Organ Dysfunction-2 (PELOD-2), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Organ Dysfunction Information Update Mandate (PODIUM) scores, measured at blood culture sampling, to predict 30-day mortality. We analyzed 877 sepsis episodes in 807 children, with a 30-day mortality of 4.3%. Percentage with organ dysfunction ranged from 32.7% (IPSCC) to 55.3% (pSOFA). In adjusted analyses, the accuracy for identification of 30-day mortality was area under the curve (AUC) 0.87 (95% CI, 0.82-0.92) for IPSCC, 0.83 (0.76-0.89) for PELOD-2, 0.85 (0.78-0.92) for pSOFA, and 0.85 (0.78-0.91) for PODIUM. When restricting scores to neurologic, respiratory, and cardiovascular dysfunction, the adjusted AUC was 0.89 (0.84-0.94) for IPSCC, 0.85 (0.79-0.91) for PELOD-2, 0.87 (0.81-0.93) for pSOFA, and 0.88 (0.83-0.93) for PODIUM. CONCLUSIONS IPSCC, PELOD-2, pSOFA, and PODIUM performed similarly to predict 30-day mortality. Simplified scores restricted to neurologic, respiratory, and cardiovascular dysfunction yielded comparable performance

    Time-to-Positivity of Blood Cultures in Children With Sepsis.

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Blood cultures are essential for the diagnosis and further appropriate treatment in children with suspected sepsis. In most hospitals, children will be empirically treated or closely monitored for at least 48 h awaiting results of blood cultures. Several studies have challenged the optimal duration of empiric treatment in the era of continuously monitored blood culture systems. The aim of our study was to investigate time-to-positivity (TTP) of blood cultures in children with proven sepsis. &lt;b&gt;Methods:&lt;/b&gt; The Swiss Pediatric Sepsis Study prospectively enrolled children 0-16 years of age with blood culture positive sepsis between September 2011 and October 2015. TTP was prospectively assessed in six participating academic pediatric hospitals by fully automated blood culture systems. &lt;b&gt;Results:&lt;/b&gt; In 521 (93%) of 562 bacteremia episodes (493 children, median age 103 days, range 0 days-16.9 years) a valid TTP was available. Median TTP was 12 h (IQR 8-17 h, range 0-109 h). By 24, 36, and 48 h, 460 (88%), 498 (96%), and 510 (98%) blood cultures, respectively, were positive. TTP was independent of age, sex, presence of comorbidities, site of infection and severity of infection. Median TTP in all age groups combined was shortest for group B streptococcus (8.7 h) and longest for coagulase-negative staphylococci (16.2 h). &lt;b&gt;Conclusion:&lt;/b&gt; Growth of bacteria in blood cultures is detectable within 24 h in 9 of 10 children with blood culture-proven sepsis. Therefore, a strict rule to observe or treat all children with suspected sepsis for at least 48 h is not justified

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
    corecore