712 research outputs found
Ab-initio electronic and magnetic structure in La_0.66Sr_0.33MnO_3: strain and correlation effects
The effects of tetragonal strain on electronic and magnetic properties of
strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are
investigated by means of density-functional methods. As far as the structural
properties are concerned, the comparison between theory and experiments for
LSMO strained on the most commonly used substrates, shows an overall good
agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium
out-of-plane lattice constants points to possible defects in real samples. The
inclusion of a Hubbard-like contribution on the Mn d states, according to the
so-called "LSDA+U" approach, is rather ineffective from the structural point of
view, but much more important from the electronic and magnetic point of view.
In particular, full half-metallicity, which is missed within a bare
density-functional approach, is recovered within LSDA+U, in agreement with
experiments. Moreover, the half-metallic behavior, particularly relevant for
spin-injection purposes, is independent on the chosen substrate and is achieved
for all the considered in-plane lattice constants. More generally, strain
effects are not seen to crucially affect the electronic structure: within the
considered tetragonalization range, the minority gap is only slightly (i.e. by
about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we
show that the growth on a smaller in-plane lattice constant can stabilize the
out-of-plane vs in-plane e_g orbital and significatively change their relative
occupancy. Since e_g orbitals are key quantities for the double-exchange
mechanism, strain effects are confirmed to be crucial for the resulting
magnetic coupling.Comment: 16 pages, 7 figures, to be published on J. Phys.: Condensed Matte
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
Superpotential de-sequestering in string models
Non-perturbative superpotential cross-couplings between visible sector matter
and K\"ahler moduli can lead to significant flavour-changing neutral currents
in compactifications of type IIB string theory. Here, we compute corrections to
Yukawa couplings in orbifold models with chiral matter localised on D3-branes
and non-perturbative effects on distant D7-branes. By evaluating a threshold
correction to the D7-brane gauge coupling, we determine conditions under which
the non-perturbative corrections to the Yukawa couplings appear. The flavour
structure of the induced Yukawa coupling generically fails to be aligned with
the tree-flavour structure. We check our results by also evaluating a
correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling.
Finally, by calculating a string amplitude between n hidden scalars and visible
matter we show how non-vanishing vacuum expectation values of distant D7-brane
scalars, if present, may correct visible Yukawa couplings with a flavour
structure that differs from the tree-level flavour structure.Comment: 37 pages + appendices, 8 figure
Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO
By using variational Monte Carlo method, we examine an effective low-energy
model for LaFeAsO derived from an ab initio downfolding scheme. We show that
quantum and many-body fluctuations near a quantum critical point largely reduce
the antiferromagnetic (AF) ordered moment and the model not only quantitatively
reproduces the small ordered moment in LaFeAsO, but also explains the diverse
dependence on LaFePO, BaFe2As2 and FeTe. We also find that LaFeAsO is under
large orbital fluctuations, sandwiched by the AF Mott insulator and weakly
correlated metals. The orbital fluctuations and Dirac-cone dispersion hold keys
for the diverse magnetic properties.Comment: 4 pages, 4 figure
Orbitally Degenerate Spin-1 Model for Insulating V2O3
Motivated by recent neutron, X-ray absorption and resonant scattering
experiments, we revisit the electronic structure of V2O3. We propose a model in
which S=1 V3+ ions are coupled in the vertical V-V pairs forming two-fold
orbitally degenerate configurations with S=2. Ferro-orbital ordering of the V-V
pairs gives a description which is consistent with all experiments in the
antiferromagnetic insulating phase.Comment: 4 pages, including three figure
Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single Photon Detectors
The security of quantum key distribution (QKD) can easily be obscured if the
eavesdropper can utilize technical imperfections of the actual implementation.
Here we describe and experimentally demonstrate a very simple but highly
effective attack which even does not need to intercept the quantum channel at
all. Only by exploiting the dead time effect of single photon detectors the
eavesdropper is able to gain (asymptotically) full information about the
generated keys without being detected by state-of-the-art QKD protocols. In our
experiment, the eavesdropper inferred up to 98.8% of the key correctly, without
increasing the bit error rate between Alice and Bob significantly. Yet, we find
an evenly simple and effective countermeasure to inhibit this and similar
attacks
A systematic review of models to predict recruitment to multicentre clinical trials
<p>Abstract</p> <p>Background</p> <p>Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision.</p> <p>Methods</p> <p>A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enrol, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form.</p> <p>Results</p> <p>Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder.</p> <p>Conclusions</p> <p>To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.</p
Phantom Inflation in Little Rip
We study the phantom inflation in little rip cosmology, in which the current
acceleration is driven by the field with the parameter of state w < -1, but
since w tends to -1 asymptotically, the rip singularity occurs only at infinite
time. In this scenario, before the rip singularity is arrived, the universe is
in an inflationary regime. We numerically calculate the spectrum of primordial
perturbation generated during this period and find that the results may be
consistent with observations. This implies that if the reheating happens again,
the current acceleration might be just a start of phantom inflation responsible
for the upcoming observational universe.Comment: 7 pages, 8 figures, discussion added, Appendix and refs. added, to be
published in PL
Universality of pseudogap and emergent order in lightly doped Mott insulators
It is widely believed that high-temperature superconductivity in the cuprates
emerges from doped Mott insulators. The physics of the parent state seems
deceivingly simple: The hopping of the electrons from site to site is
prohibited because their on-site Coulomb repulsion U is larger than the kinetic
energy gain t. When doping these materials by inserting a small percentage of
extra carriers, the electrons become mobile but the strong correlations from
the Mott state are thought to survive; inhomogeneous electronic order, a
mysterious pseudogap and, eventually, superconductivity appear. How the
insertion of dopant atoms drives this evolution is not known, nor whether these
phenomena are mere distractions specific to hole-doped cuprates or represent
the genuine physics of doped Mott insulators. Here, we visualize the evolution
of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2
Mott insulator like the cuprates, but is chemically radically different. Using
spectroscopic-imaging STM, we find that for doping concentration of x=5%, an
inhomogeneous, phase separated state emerges, with the nucleation of pseudogap
puddles around clusters of dopant atoms. Within these puddles, we observe the
same glassy electronic order that is so iconic for the underdoped cuprates.
Further, we illuminate the genesis of this state using the unique possibility
to localize dopant atoms on topographs in these samples. At low doping, we find
evidence for much deeper trapping of carriers compared to the cuprates. This
leads to fully gapped spectra with the chemical potential at mid-gap, which
abruptly collapse at a threshold of around 4%. Our results clarify the melting
of the Mott state, and establish phase separation and electronic order as
generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates
on figures and tex
A statistical model for the identification of genes governing the incidence of cancer with age
The cancer incidence increases with age. This epidemiological pattern of cancer incidence can be attributed to molecular and cellular processes of individual subjects. Also, the incidence of cancer with ages can be controlled by genes. Here we present a dynamic statistical model for explaining the epidemiological pattern of cancer incidence based on individual genes that regulate cancer formation and progression. We incorporate the mathematical equations of age-specific cancer incidence into a framework for functional mapping aimed at identifying quantitative trait loci (QTLs) for dynamic changes of a complex trait. The mathematical parameters that specify differences in the curve of cancer incidence among QTL genotypes are estimated within the context of maximum likelihood. The model provides testable quantitative hypotheses about the initiation and duration of genetic expression for QTLs involved in cancer progression. Computer simulation was used to examine the statistical behavior of the model. The model can be used as a tool for explaining the epidemiological pattern of cancer incidence
- …