53 research outputs found

    Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200811000Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims. We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods. We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.Peer reviewe

    TRIGONOMETRIC PARALLAXES AND PROPER MOTIONS OF 134 SOUTHERN LATE M, L, AND T DWARFS FROM THE CARNEGIE ASTROMETRIC PLANET SEARCH PROGRAM

    Get PDF
    This work has beensupported in part by NSF grant AST-0352912, NASA Origins of Solar Systems grant NNX09AF62G, and NASA Astrobiology Institute grant NNA09DA81A This publication made use of the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5- 26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts

    A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU

    Get PDF
    Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).Our nearest neighbor, Proxima Centauri, hosts a temperate terrestrial planet. We detected in radial velocities evidence of a possible second planet with minimum mass m c sin i c = 5.8 ± 1.9 M ⊕ and orbital period P c = 5.21 - 0.22 + 0.26 years. The analysis of photometric data and spectro-scopic activity diagnostics does not explain the signal in terms of a stellar activity cycle, but follow-up is required in the coming years for confirming its planetary origin. We show that the existence of the planet can be ascertained, and its true mass can be determined with high accuracy, by combining Gaia astrometry and radial velocities. Proxima c could become a prime target for follow-up and characterization with next-generation direct imaging instrumentation due to the large maximum angular separation of ~1 arc second from the parent star. The candidate planet represents a challenge for the models of super-Earth formation and evolution.Peer reviewedFinal Published versio

    Transmission spectroscopy and Rossiter-McLaughlin measurements of the young Neptune orbiting AU Mic

    Full text link
    AU Mic~b is a Neptune size planet on a 8.47-day orbit around the nearest pre-main sequence (\sim20 Myr) star to the Sun, the bright (V=8.81) M dwarf AU Mic. The planet was preliminary detected in Doppler radial velocity time series and recently confirmed to be transiting with data from the TESS mission. AU Mic~b is likely to be cooling and contracting and might be accompanied by a second, more massive planet, in an outer orbit. Here, we present the observations of the transit of AU Mic~b using ESPRESSO on the VLT. We obtained a high-resolution time series of spectra to measure the Rossiter-McLaughlin effect and constrain the spin-orbit alignment of the star and planet, and simultaneously attempt to retrieve the planet's atmospheric transmission spectrum. These observations allow us to study for the first time the early phases of the dynamical evolution of young systems. We apply different methodologies to derive the spin-orbit angle of AU Mic~b, and all of them retrieve values consistent with the planet being aligned with the rotation plane of the star. We determine a conservative spin-orbit angle λ\lambda value of 2.9610.30+10.44-2.96^{+10.44}_{-10.30}, indicative that the formation and migration of the planets of the AU Mic system occurred within the disk. Unfortunately, and despite the large SNR of our measurements, the degree of stellar activity prevented us from detecting any features from the planetary atmosphere. In fact, our results suggest that transmission spectroscopy for recently formed planets around active young stars is going to remain very challenging, if at all possible, for the near future.Comment: Submitted to A&A, under second revie

    Concept and optical design of the cross-disperser module for CRIRES

    Get PDF
    This is the peer reviewed version of the following article: Oliva, Ernesto, A. Tozzi, D. Ferruzzi, L. Origlia, A. Hatzes, R. Follert, T. Loewinger et al. "Concept and optical design of the cross-disperser module for CRIRES+." In SPIE Astronomical Telescopes+ Instrumentation, pp. 91477R-91477R. International Society for Optics and Photonics, 2014, which has been published in final form at 10.1117/12.2054381

    Transit timing variation in exoplanet WASP-3b

    Full text link
    Photometric follow-ups of transiting exoplanets may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. We present photometric observations gathered in 2009 and 2010 for exoplanet WASP-3b during the dedicated transit-timing-variation campaign. The observed transit timing cannot be explained by a constant period but by a periodic variation in the observations minus calculations diagram. Simplified models assuming the existence of a perturbing planet in the system and reproducing the observed variations of timing residuals were identified by three-body simulations. We found that the configuration with the hypothetical second planet of the mass of about 15 Earth masses, located close to the outer 2:1 mean motion resonance is the most likely scenario reproducing observed transit timing. We emphasize, however, that more observations are required to constrain better the parameters of the hypothetical second planet in WASP-3 system. For final interpretation not only transit timing but also photometric observations of the transit of the predicted second planet and the high precision radial-velocity data are needed.Comment: MNRAS accepte

    Transit timing variation and activity in the WASP-10 planetary system

    Full text link
    Transit timing analysis may be an effective method of discovering additional bodies in extrasolar systems which harbour transiting exoplanets. The deviations from the Keplerian motion, caused by mutual gravitational interactions between planets, are expected to generate transit timing variations of transiting exoplanets. In 2009 we collected 9 light curves of 8 transits of the exoplanet WASP-10b. Combining these data with published ones, we found that transit timing cannot be explained by a constant period but by a periodic variation. Simplified three-body models which reproduce the observed variations of timing residuals were identified by numerical simulations. We found that the configuration with an additional planet of mass of \sim0.1 MJM_{\rm{J}} and orbital period of \sim5.23 d, located close to the outer 5:3 mean motion resonance, is the most likely scenario. If the second planet is a transiter, the estimated flux drop will be \sim0.3 per cent and can be observable with a ground-based telescope. Moreover, we present evidence that the spots on the stellar surface and rotation of the star affect the radial velocity curve giving rise to spurious eccentricity of the orbit of the first planet. We argue that the orbit of WASP-10b is essentially circular. Using the gyrochronology method, the host star was found to be 270±80270 \pm 80 Myr old. This young age can explain the large radius reported for WASP-10b.Comment: MNRAS accepte

    A multiplanet system of super-Earths orbiting the brightest red dwarf star GJ 887

    Get PDF
    The closet exoplanets to the Sun provide opportunities for detailed characterization of planets outside the Solar System. We report the discovery, using radial velocity measurements, of a compact multiplanet system of super-Earth exoplanets orbiting the nearby red dwarf star GJ 887. The two planets have orbital periods of 9.3 and 21.8 days. Assuming an Earth-like albedo, the equilibrium temperature of the 21.8-day planet is ~350 kelvin. The planets are interior to, but close to the inner edge of, the liquid-water habitable zone. We also detect an unconfirmed signal with a period of ~50 days, which could correspond to a third super-Earth in a more temperate orbit. Our observations show that GJ 887 has photometric variability below 500 parts per million, which is unusually quiet for a red dwarf

    Analysis of combined radial velocities and activity of BD+20 1790: evidence supporting the existence of a planetary companion

    Get PDF
    Results. We conclude that the Bayesian analysis and the new activity study support the presence of a planetary companion to BD+20 1790. A new orbital solution is presented, after removing the two main contributions of stellar jitter, one that varies with the photometric period (2.8 days) and another that varies with the synodic period of the star-planet system (4.36 days). We present a new method to determine these jitter components, considering them as second and third signals in the system. A discussion on possible star-planet interaction is included, based on the Bayesian analysis of the activity indices, which indicates that they modulate with the synodic period. We propose two different sources for flare events in this system: one related to the geometry of the system and the relative movement of the star and planet, and a second one purely stochastic source that is related to the evolution of stellar surface active regions. Also, we observe for the first time the magnetic field of the star, from spectropolarimetric data.</p
    corecore