414 research outputs found

    The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010

    Get PDF
    Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 × 10-5 s-1 during clear days and (1 ± 0.3) × 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 ÎŒg m-3 to a maximum of 8.8 ÎŒg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 ÎŒg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union

    Nighttime removal of NOx in the summer marine boundary layer

    Get PDF
    The nitrate radical, NO3, and dinitrogen pentoxide, N2O5, are two important components of nitrogen oxides that occur predominantly at night in the lower troposphere. Because a large fraction of NO2 reacts to form NO3 and N2O5 during the course of a night, their fate is an important determining factor to the overall fate of NOx (=NO and NO2). As a comprehensive test of nocturnal nitrogen oxide chemistry, concentrations of O3, NO, NO2, NO3, N2O5, HNO3 and a host of other relevant compounds, aerosol abundance and composition, and meteorological conditions were measured in the marine boundary layer from the NOAA research vessel Ronald H. Brown off the East Coast of the United States as part of the New England Air Quality Study (NEAQS) during the summer of 2002. The results confirm the prominent role of NO3 and N2O5 in converting NOx to HNO3 at night with an efficiency on par with daytime photochemical conversion. The findings demonstrate the large role of nighttime chemistry in determining the NOx budget and consequent production of ozone. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry. Citation: Brown, S. S., et al. (2004), Nighttime removal of NOx in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, doi:10.1029/2004GL01941

    Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    Get PDF
    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∌258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∌33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∌14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union

    Studying the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST)

    Get PDF
    At the end of the afternoon, when the surface heat fluxes start to sharply decrease, the CBL turns from a convective well-mixed layer to an intermittently turbulent residual layer overlying a stably-stratified boundary layer. This transition raises several observational and modelling issues. Even the definition of the boundary layer during this period is fuzzy, since there is no consensus on what criteria to use and no simple scaling laws to apply. Yet it plays an important role in such diverse atmospheric phenomena as transport and diffusion of trace constituents or wind energy production. This phase of the diurnal cycle remains largely unexplored, partly due to the difficulty of measuring weak and intermittent turbulence, anisotropy, horizontal heterogeneity, and rapid time changes. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) project is gathering about thirty research scientists from the European Union and the United States to work on this issue. A field campaign (BLLAST-FE) is planned for spring or summer 2011 in Europe. BLLAST will utilize these observations, as well as previous datasets, large-eddy and direct numerical simulations, and mesoscale modelling to better understand the processes, suggest new parameterisations, and evaluate forecast models during this transitional period. We will present the issues raised by the late afternoon transition and our strategy to study it.Peer ReviewedPostprint (published version

    Studying the Boundary Layer Late Afternoon nd Sunset Turbulence (BLLAST)

    Get PDF
    At the end of the afternoon, when the surface heat fluxes start to sharply decrease, the CBL turns from a convective well-mixed layer to an intermittently turbulent residual layer overlying a stably-stratified boundary layer. This transition raises several observational and modeling issues. Even the definition of the boundary layer during this period is fuzzy, since there is no consensus on what criteria to use and no simple scaling laws to apply. Yet it plays an important role in such diverse atmospheric phenomena as transport and diffusion of trace constituents or wind energy production. This phase of the diurnal cycle remains largely unexplored, partly due to the difficulty of measuring weak and intermittent turbulence, anisotropy, horizontal heterogeneity, and rapid time changes. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) project is gathering about thirty research scientists from the European Union and the United States to work on this issue. A field campaign (BLLAST-FE) is planned for spring or summer 2011 in Europe. BLLAST will utilize these observations, as well as previous datasets, large-eddy and direct numerical simulations, and mesoscale modeling to better understand the processes, suggest new parameterizations, and evaluate forecast models during this transitional period. We will present the issues raised by the late afternoon transition and our strategy to study it.Peer ReviewedPostprint (published version

    Black carbon aerosol over the Los Angeles Basin during CalNex

    Get PDF
    Refractory black carbon (rBC) mass and number concentrations were quantified by a Single Particle Soot Photometer (SP2) in the CalNex 2010 field study on board the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter in the Los Angeles (LA) Basin in May, 2010. The mass concentrations of rBC in the LA Basin ranged from 0.002–0.530 ÎŒg m^(−3), with an average of 0.172 ÎŒg m^(−3). Lower concentrations were measured in the Basin outflow regions and above the inversion layer. The SP2 afforded a quantification of the mixing state of rBC aerosols through modeling the scattering cross-section with a core-and-shell Mie model to determine coating thickness. The rBC particles above the inversion layer were more thickly coated by a light-scattering substance than those below, indicating a more aged aerosol in the free troposphere. Near the surface, as the LA plume is advected from west to east with the sea breeze, a coating of scattering material grows on rBC particles, coincident with a clear growth of ammonium nitrate within the LA Basin and the persistence of water-soluble organic compounds as the plume travels through the outflow regions. Detailed analysis of the rBC mixing state reveals two modes of coated rBC particles; a mode with smaller rBC core diameters (∌90 nm) but thick (>200 nm) coating diameters and a mode with larger rBC cores (∌145 nm) with a thin (<75 nm) coating. The “weekend effect” in the LA Basin results in more thickly coated rBC particles, coinciding with more secondary formation of aerosol

    Single‐Column Model Simulations of Subtropical Marine Boundary‐Layer Cloud Transitions Under Weakening Inversions

    Get PDF
    Results are presented of the GASS/EUCLIPSE single‐column model intercomparison study on the subtropical marine low‐level cloud transition. A central goal is to establish the performance of state‐of‐the‐art boundary‐layer schemes for weather and climate models for this cloud regime, using large‐eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North‐Eastern Pacific, while one reflects conditions in the North‐Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low‐level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well‐known “too few too bright” problem. The boundary‐layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization

    Design of the PROCON trial: a prospective, randomized multi – center study comparing cervical anterior discectomy without fusion, with fusion or with arthroplasty

    Get PDF
    BACKGROUND: PROCON was designed to assess the clinical outcome, development of adjacent disc disease and costs of cervical anterior discectomy without fusion, with fusion using a stand alone cage and implantation of a Bryan's disc prosthesis. Description of rationale and design of PROCON trial and discussion of its strengths and limitations. METHODS/DESIGN: Since proof justifying the use of implants or arthroplasty after cervical anterior discectomy is lacking, PROCON was designed. PROCON is a multicenter, randomized controlled trial comparing cervical anterior discectomy without fusion, with fusion with a stand alone cage or with implantation of a disc. The study population will be enrolled from patients with a single level cervical disc disease without myelopathic signs. Each treatment arm will need 90 patients. The patients will be followed for a minimum of five years, with visits scheduled at 6 weeks, 3 months, 12 months, and then yearly. At one year postoperatively, clinical outcome and self reported outcomes will be evaluated. At five years, the development of adjacent disc disease will be investigated. DISCUSSION: The results of this study will contribute to the discussion whether additional fusion or arthroplasty is needed and cost effective. TRIAL REGISTRATION: Current Controlled Trials ISRCTN4168184
    • 

    corecore