870 research outputs found

    Communique, 26 January 2004

    No full text
    Main story: "Netware? Beware!". Second story: "Web cache-'n'-carry shuts up shop". Item: "Basement jacks for self-service musicians...". Item: "No-strings-attached networking". Feature: "ISS-Windows98 relationship: the 5-year ditch?". Contact information: "Contacting Information Systems Services"

    Endophilin regulates JNK activation through its interaction with the germinal center kinase-like kinase

    Get PDF
    The endophilin family of proteins function in clathrin-mediated endocytosis. Here, we have identified and cloned the rat germinal center kinase-like kinase (rGLK), a member of the GCK (germinal center kinase) family of e-Jun N-terminal kinase (JNK) activating enzymes, as a novel endophilin I-binding partner. The interaction occurs both in vitro and in cells and is mediated by the Src homology 3 domain of endophilin I and a region of rGLK containing the endophilin consensus-binding sequence PPRPPPPR. Overlay analysis of rat brain extracts demonstrates that endophilin I is a major Src homology 3 domain-binding partner for rGLK. Overexpression of full-length endophilin I activates rGLK-mediated JNK activation, whereas N- and C-terminal fragments of endophilin I block JNK activation. Thus, endophilin I appears to have a novel function in JNK activation

    Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity

    Get PDF
    Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca2+ signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity

    A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics

    Get PDF
    BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases

    Magnetic field asymmetry of mesocopic dc rectification in Aharonov Bohm rings

    Full text link
    Fundamental Casimir-Onsager symmetry rules for linear response do not apply to non linear transport. This motivates the investigation of nonlinear dc conductance of mesoscopic GaAs/GaAlAs rings in a 2 wire configuration. The second order current response to a potential bias is of particular interest. It is related to the sensitivity of conductance fluctuations to this bias and contains information on electron interactions not included in the linear response. In contrast with the linear response which is a symmetric function of magnetic field we find that this second order response exhibits a field dependence which contains an antisymmetric part. We analyse the flux periodic and aperiodic components of this asymmetry and find that they only depend on the conductance of the rings which is varied by more than an order of magnitude. These results are in good agreement with recent theoretical predictions relating this asymmetric response to the electron interactions.Comment: 5 pages, 4 figure

    Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica)

    Get PDF
    Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Mario Röder and Keliya Bai for fieldwork assistance; Alex Douglas for statistical advice; Tyler Stevenson, Heather Ritchie and three anonymous reviewers for helpful comments on manuscript drafts; and all estate owners, factors and keepers for access to field sites, most particularly MJ Taylor and Mike Nisbet (Airlie), Neil Brown (Allargue), RR Gledson and David Scrimgeour (Delnadamph), Andrew Salvesen and John Hay (Dinnet), Stuart Young and Derek Calder (Edinglassie), Kirsty Donald and David Busfield (Glen Dye), Neil Hogbin and Ab Taylor (Glen Muick), Alistair Mitchell (Glenlivet), Simon Blackett, Jim Davidson and Liam Donald (Invercauld) Richard Cooke and Fred Taylor (Invermark), Shaila Rao and Christopher Murphy (Mar Lodge), and Ralph Peters and Philip Astor (Tillypronie).Peer reviewedPublisher PD

    Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

    Get PDF
    Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans

    Distinct Molecular Evolutionary Mechanisms Underlie the Functional Diversification of the Wnt and TGFβ Signaling Pathways

    Get PDF
    The canonical Wnt pathway is one of the oldest and most functionally diverse of animal intercellular signaling pathways. Though much is known about loss-of-function phenotypes for Wnt pathway components in several model organisms, the question of how this pathway achieved its current repertoire of functions has not been addressed. Our phylogenetic analyses of 11 multigene families from five species belonging to distinct phyla, as well as additional analyses employing the 12 Drosophila genomes, suggest frequent gene duplications affecting ligands and receptors as well as co-evolution of new ligand–receptor pairs likely facilitated the expansion of this pathway’s capabilities. Further, several examples of recent gene loss are visible in Drosophila when compared to family members in other phyla. By comparison the TGFβ signaling pathway is characterized by ancient gene duplications of ligands, receptors, and signal transducers with recent duplication events restricted to the vertebrate lineage. Overall, the data suggest that two distinct molecular evolutionary mechanisms can create a functionally diverse developmental signaling pathway. These are the recent dynamic generation of new genes and ligand–receptor interactions as seen in the Wnt pathway and the conservative adaptation of ancient pre-existing genes to new roles as seen in the TGFβ pathway. From a practical perspective, the former mechanism limits the investigator’s ability to transfer knowledge of specific pathway functions across species while the latter facilitates knowledge transfer
    corecore