32 research outputs found

    Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm

    Get PDF
    Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.Peer ReviewedPostprint (author's final draft

    Development of a Preclinical Therapeutic Model of Human Brain Metastasis with Chemoradiotherapy

    Get PDF
    Currently, survival of breast cancer patients with brain metastasis ranges from 2 to 16 months. In experimental brain metastasis studies, only 10% of lesions with the highest permeability exhibited cytotoxic responses to paclitaxel or doxorubicin. Therefore, radiation is the most frequently used treatment, and sensitizing agents, which synergize with radiation, can improve the efficacy of the therapy. In this study we used 435-Br1 cells containing the fluorescent protein (eGFP) gene and the photinus luciferase (PLuc) gene to develop a new brain metastatic cell model in mice through five in vivo/in vitro rounds. BR-eGFP-CMV/Luc-V5 brain metastatic cells induce parenchymal brain metastasis within 60.8 ± 13.8 days of intracarotid injection in all mice. We used this model to standardize a preclinical chemoradiotherapy protocol comprising three 5.5 Gy fractions delivered on consecutive days (overall dose of 16.5 Gy) which improved survival with regard to controls (60.29 ± 8.65 vs. 47.20 ± 11.14). Moreover, the combination of radiotherapy with temozolomide, 60 mg/Kg/day orally for five consecutive days doubled survival time of the mice 121.56 ± 52.53 days (Kaplan-Meier Curve, p < 0.001). This new preclinical chemoradiotherapy protocol proved useful for the study of radiation response/resistance in brain metastasis, either alone or in combination with new sensitizing agents.Currently, survival of breast cancer patients with brain metastasis ranges from 2 to 16 months. In experimental brain metastasis studies, only 10% of lesions with the highest permeability exhibited cytotoxic responses to paclitaxel or doxorubicin. Therefore, radiation is the most frequently used treatment, and sensitizing agents, which synergize with radiation, can improve the efficacy of the therapy. In this study we used 435-Br1 cells containing the fluorescent protein (eGFP) gene and the photinus luciferase (PLuc) gene to develop a new brain metastatic cell model in mice through five in vivo/in vitro rounds. BR-eGFP-CMV/Luc-V5 brain metastatic cells induce parenchymal brain metastasis within 60.8 ± 13.8 days of intracarotid injection in all mice. We used this model to standardize a preclinical chemoradiotherapy protocol comprising three 5.5 Gy fractions delivered on consecutive days (overall dose of 16.5 Gy) which improved survival with regard to controls (60.29 ± 8.65 vs. 47.20 ± 11.14). Moreover, the combination of radiotherapy with temozolomide, 60 mg/Kg/day orally for five consecutive days doubled survival time of the mice 121.56 ± 52.53 days (Kaplan-Meier Curve, p < 0.001). This new preclinical chemoradiotherapy protocol proved useful for the study of radiation response/resistance in brain metastasis, either alone or in combination with new sensitizing agents

    Predictive and Prognostic Brain Metastases Assessment in Luminal Breast Cancer Patients: FN14 and GRP94 from Diagnosis to Prophylaxis

    Get PDF
    FN14 has been implicated in many intracellular signaling pathways, and GRP94 is a well-known endoplasmic reticulum protein regulated by glucose. Recently, both have been associated with metastasis progression in breast cancer patients. We studied the usefulness of FN14 and GRP94 expression to stratify breast cancer patients according their risk of brain metastasis (BrM) progression. We analyzed FN14 and GRP94 by immunohistochemistry in a retrospective multicenter study using tissue microarrays from 208 patients with breast carcinomas, of whom 52 had developed BrM. Clinical and pathological characteristics and biomarkers expression in Luminal and non-Luminal patients were analyzed using a multivariate logistic regression model adjusted for covariates, and brain metastasis-free survival (BrMFS) was estimated using the Kaplan–Meier method and the Cox proportional hazards model. FN14 expression was associated with BrM progression mainly in Luminal breast cancer patients with a sensitivity (53.85%) and specificity (89.60%) similar to Her2 expression (46.15 and 89.84%, respectively). Moreover, the likelihood to develop BrM in FN14-positive Luminal carcinomas increased 36.70-fold (3.65–368.25, p = 0.002). Furthermore, the worst prognostic factor for BrMFS in patients with Luminal carcinomas was FN14 overexpression (HR = 8.25; 95% CI: 2.77–24.61; p = 0.00015). In these patients, GRP94 overexpression also increased the risk of BrM (HR = 3.58; 95% CI: 0.98–13.11; p = 0.054—Wald test). Therefore, FN14 expression in Luminal breast carcinomas is a predictive/prognostic biomarker of BrM, which combined with GRP94 predicts BrM progression in non-Luminal tumors 4.04-fold (1.19–8.22, p = 0.025), suggesting that both biomarkers are useful to stratify BrM risk at early diagnosis. We propose a new follow-up protocol for the early prevention of clinical BrM of breast cancer patients with BrM risk

    HIV-infection, atherosclerosis and the inflammatory pathway: candidate gene study in a Spanish HIV-infected population.

    Get PDF
    BACKGROUND: Higher prevalence of atherosclerosis and higher cardiovascular risk is observed in HIV-infected individuals. The biological mechanisms underlying these processes are unclear. Several studies have implicated genetic variants in the inflammatory genes in cardiovascular disease and in HIV natural course infection. METHODS & FINDINGS: In this study we have tested the possible association between genetic variants in several inflammatory genes and asymptomatic cardiovascular disease measured by carotid intima media thickness (cIMT) and atherosclerotic plaque presence as dependent variables in 213 HIV-infected individuals. A total of 101 genetic variants in 25 candidate genes have been genotyped. Results were analyzed using Plink and SPSS statistical packages. We have found several polymorphisms in the genes ALOX5 (rs2115819 p = 0.009), ALOX5AP (rs9578196 p = 0.007; rs4769873 p = 0.004 and rs9315051 p = 0.0004), CX3CL1 (rs4151117 p = 0.040 and rs614230 p = 0.015) and CCL5 (rs3817655 p = 0.018 and rs2107538 p = 0.018) associated with atherosclerotic plaque. cIMT mean has been associated with CRP (1130864 p = 0.0003 and rs1800947 p = 0.008), IL1RN (rs380092 p = 0.002) and ALOX5AP (rs3885907 p = 0.02) genetic variants. CONCLUSIONS: In this study we have found modest associations between genetic variants in several inflammatory genes and atherosclerotic plaque or cIMT. Nevertheless, our study adds evidence to the association between inflammatory pathway genetic variants and the atherosclerotic disease in HIV-infected individuals

    Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells

    Get PDF
    The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600–2.500 cm−1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]−, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]− translocates GIC cells’ membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.The authors received support from the Spanish Ministry of Health and Consumer Afairs, the ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER) FIS-PI18/00916. This work has been supported by the Spanish Ministerio de Economía y Competitividad (PID2019-106832RB-I00), the Generalitat de Catalunya (2017SGR1720) and CELLSALBA Synchroton (Ref.: 2019023533). Miquel Nuez is enrolled in the PhD program of the UAB.Peer reviewe

    Diagnosis of Genetic White Matter Disorders by Singleton Whole-Exome and Genome Sequencing Using Interactome-Driven Prioritization

    Get PDF
    Background and Objectives Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. Methods A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. Results We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. Discussion Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance
    corecore