2,609 research outputs found

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains

    Full text link
    We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that of models based on free-volume congested dynamics are questioned. Finally, we discuss how the main aspects of the phenomenology of supercooled liquids, including the crossover from Arrhenius to superArrhenius activated behavior and the heterogeneous character of the α\alpha relaxation, can be described by an approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Subdiffusion and cage effect in a sheared granular material

    Full text link
    We investigate experimentally the diffusion properties of a bidimensional bidisperse dry granular material under quasistatic cyclic shear.The comparison of these properties with results obtained both in computer simulations of hard spheres systems and Lenard-Jones liquids and experiments on colloidal systems near the glass transition demonstrates a strong analogy between the behaviour of granular matter and these systems. More specifically, we study in detail the cage dynamics responsible for the subdiffusion in the slow relaxation regime, and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR

    Spinodal of supercooled polarizable water

    Full text link
    We develop a series of molecular dynamics computer simulations of liquid water, performed with a polarizable potential model, to calculate the spinodal line and the curve of maximum density inside the metastable supercooled region. After analysing the structural properties,the liquid spinodal line is followed down to T=210 K. A monotonic decrease is found in the explored region. The curve of maximum density bends on approaching the spinodal line. These results, in agreement with similar studies on non polarizable models of water, are consistent with the existence of a second critical point for water.Comment: 8 pages, 5 figures, 2 tables. To be published in Phys. Re

    Microscopic theory of network glasses

    Get PDF
    A molecular theory of the glass transition of network forming liquids is developed using a combination of self-consistent phonon and liquid state approaches. Both the dynamical transition and the entropy crisis characteristic of random first order transitions are mapped out as a function of the degree of bonding and the density. Using a scaling relation for a soft-core model to crudely translate the densities into temperatures, the theory predicts that the ratio of the dynamical transition temperature to the laboratory transition temperature rises as the degree of bonding increases, while the Kauzmann temperature falls relative to the laboratory transition. These results indicate why highly coordinated liquids should be "strong" while van der Waals liquids without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in Phys. Rev. Let

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    Effect of entropy on the dynamics of supercooled liquids: New results from high pressure data

    Full text link
    We show that for arbitrary thermodynamic conditions, master curves of the entropy are obtained by expressing S(T,V) as a function of TV^g_G, where T is temperature, V specific volume, and g_G the thermodynamic Gruneisen parameter. A similar scaling is known for structural relaxation times,tau = f(TV^g); however, we find g_G < g. We show herein that this inequality reflects contributions to S(T,V) from processes, such as vibrations and secondary relaxations, that do not directly influence the supercooled dynamics. An approximate method is proposed to remove these contributions, S_0, yielding the relationship tau = f(S-S_0).Comment: 10 pages 7 figure

    Don't Distract Me When I'm Media Multitasking: Toward a Theory for Raising Advertising Recall and Recognition

    Get PDF
    Media multitasking, such as using handheld devices like smartphones and tablets while watching TV, has become prevalent but its effect on the recall and recognition of advertising subject to limited academic research. We contend that the context in which multitasking takes place affects consumer memory for advertising delivered via the primary activity (e.g., watching television). Specifically, we identify the importance of the degree of (a) congruence between the primary and second screen activity and (b) social accountability of second screen activities. We test our typology empirically by examining the determinants of next day recall and recognition for billboard advertisers (perimeter board advertisements) of a televised football (soccer) match. In line with our theory, in most cases media multitasking leads to worse recall and recognition, however, in situations where there is congruence between primary and second screen activities and secondary activities have a higher level of social accountability attached to them, then advertising recall and recognition improves

    Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed {\it via} computer simulations of a model liquid. The results obtained indicate that the liquid - gas spinodal and the glass transition lines intersect at a finite temperature, implying a glass - gas mechanical instability locus at low temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well with each other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Trends in total column ozone measurements

    Get PDF
    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record
    • …
    corecore