89 research outputs found

    Bonding of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    Microbonding of the CMS Tracker Inner Barrel (TIB) and Tracker Inner Disks (TID) modules was shared among six different Italian Institutes. The organization devised and the infrastructure deployed to handle this task is illustrated. Microbonding specifications and procedures for the different types of TIB and TID modules are given. The tooling specially designed and developed for these types of modules is described. Experience of production is presented. Attained production rates are given. An analysis of the microbonding quality achieved is presented, based on bond strengths measured in sample bond pull tests as well as on rates of bonding failures. Italian Bonding Centers routinely performed well above minimum specifications and a very low global introduced failure rate, at the strip level, of only \sim0.015 \% is observed

    Assembly of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customization and the calibration of the robotic system adopted by the CMS Tracker community, starting from a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illustrated in detail. Finally, the results for the mechanical precision of all assembled modules are reported

    John Newsom-Davis: clinician-scientist and so much more

    Get PDF
    John Newsom-Davis was born in 1932 and died, aged 74, in 2007. After national service in the Royal Air Force, he read Natural Sciences at Cambridge. Following clinical studies at the Middlesex Hospital, he began research into respiratory neurophysiology with Tom Sears at the National Hospital, Queen Square, in London, and spent 1 year with Fred Plum at Cornell University in New York. After neurology specialist training at Queen Square, he became the director of the Batten Unit, continuing his interest in respiratory physiology. There he began to work on myasthenia gravis in collaboration with Ricardo Miledi at University College London and in 1978, after performing the first studies on plasma exchange in that disease, he established a myasthenia gravis research group at the Royal Free Hospital. There he investigated the role of the thymus in this disease and demonstrated an autoimmune basis for the Lambert Eaton myasthenic syndrome and ‘seronegative’ myasthenia. He was awarded the first Medical Research Council Clinical Research Professorship in 1979 but moved to Oxford in 1987 when he was elected Action Research Professor of Neurology. While at Oxford, he continued to run a very successful multidisciplinary group, researched further into the thymic abnormalities and cellular immunology of myasthenia, identified antibody-mediated mechanisms in acquired neuromyotonia, and began the molecular work that identified the genetic basis for many forms of congenital myasthenic syndrome. Meanwhile, he was also involved in university and college governance and contributed widely to the Medical Research Council, government committees, research charities and the Association of British Neurologists. Among many honours, he was elected Fellow of the Royal Society in 1991, appointed Commander of the British Empire in 1996 and made a Foreign Associate Member of the Institute of Medicine of the United States in 2001. Nearing and following retirement from Oxford, where he continued to see patients with myasthenia, he was the President of the Association of British Neurologists and Editor of Brain, and led a National Institutes of Health-funded international trial of thymectomy

    The collaborative outcomes study on health and functioning during infection times in adults (COH-FIT-Adults):Design and methods of an international online survey targeting physical and mental health effects of the COVID-19 pandemic

    Get PDF
    Background: . High-quality comprehensive data on short-/long-term physical/mental health effects of the COVID-19 pandemic are needed. Methods: . The Collaborative Outcomes study on Health and Functioning during Infection Times (COH-FIT) is an international, multi-language (n=30) project involving >230 investigators from 49 countries/territories/regions, endorsed by national/international professional associations. COH-FIT is a multi-wave, on-line anonymous, cross-sectional survey [wave 1: 04/2020 until the end of the pandemic, 12 months waves 2/3 starting 6/24 months threreafter] for adults, adolescents (14-17), and children (6-13), utilizing non-probability/snowball and representative sampling. COH-FIT aims to identify non-modifiable/modifiable risk factors/treatment targets to inform prevention/intervention programs to improve social/health outcomes in the general population/vulnerable subgrous during/after COVID-19. In adults, co-primary outcomes are change from pre-COVID-19 to intra-COVID-19 in well-being (WHO-5) and a composite psychopathology P-Score. Key secondary outcomes are a P-extended score, global mental and physical health. Secondary outcomes include health-service utilization/ functioning, treatment adherence, functioning, symptoms/behaviors/emotions, substance use, violence, among others. Results: . Starting 04/26/2020, up to 14/07/2021 >151,000 people from 155 countries/territories/regions and six continents have participated. Representative samples of >= 1,000 adults have been collected in 15 countries. Overall, 43.0% had prior physical disorders, 16.3% had prior mental disorders, 26.5% were health care workers, 8.2% were aged >= 65 years, 19.3% were exposed to someone infected with COVID-19, 76.1% had been in quarantine, and 2.1% had been COVID 19-positive. Limitations: . Cross-sectional survey, preponderance of non-representative participants. Conclusions: . Results from COH-FIT will comprehensively quantify the impact of COVID-19, seeking to identify high-risk groups in need for acute and long-term intervention, and inform evidence-based health policies/strategies during this/future pandemics

    Physical and mental health impact of COVID-19 on children, adolescents, and their families:The Collaborative Outcomes study on Health and Functioning during Infection Times-Children and Adolescents (COH-FIT-C&A)

    Get PDF
    Background: The COVID-19 pandemic has altered daily routines and family functioning, led to closing schools, and dramatically limited social interactions worldwide. Measuring its impact on mental health of vulnerable children and adolescents is crucial. Methods: The Collaborative Outcomes study on Health and Functioning during Infection Times (COH-FIT - www. coh-fit.com) is an on-line anonymous survey, available in 30 languages, involving >230 investigators from 49 countries supported by national/international professional associations. COH-FIT has thee waves (until the pandemic is declared over by the WHO, and 6-18 months plus 24-36 months after its end). In addition to adults, COH-FIT also includes adolescents (age 14-17 years), and children (age 6-13 years), recruited via nonprobability/snowball and representative sampling and assessed via self-rating and parental rating. Nonmodifiable/modifiable risk factors/treatment targets to inform prevention/intervention programs to promote health and prevent mental and physical illness in children and adolescents will be generated by COH-FIT. Co primary outcomes are changes in well-being (WHO-5) and a composite psychopathology P-Score. Multiple behavioral, family, coping strategy and service utilization factors are also assessed, including functioning and quality of life. Results: Up to June 2021, over 13,000 children and adolescents from 59 countries have participated in the COHFIT project, with representative samples from eleven countries. Limitations: Cross-sectional and anonymous design. Conclusions: Evidence generated by COH-FIT will provide an international estimate of the COVID-19 effect on children's, adolescents' and families', mental and physical health, well-being, functioning and quality of life, informing the formulation of present and future evidence-based interventions and policies to minimize adverse effects of the present and future pandemics on youth

    PCSK6 and Survival in Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 x 10(-5)) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 x 10(-8)). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 x 10(-9)). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression
    corecore