43 research outputs found

    Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge

    Get PDF
    BACKGROUND: Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS: We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS: Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS: TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions

    Quantifying primaquine effectiveness and improving adherence: a round table discussion of the APMEN Vivax Working Group.

    Get PDF
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Oxygen-Linked S-Nitrosation in Fish Myoglobins: A Cysteine-Specific Tertiary Allosteric Effect

    No full text
    <div><p>The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O<sub>2</sub> affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated <i>in vitro</i> by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O<sub>2</sub> affinity (<i>P</i><sub>50</sub> = 2.7 torr) that was increased by S-nitrosation (<i>P</i><sub>50</sub> = 1.7 torr), whereas in tuna Mb, O<sub>2</sub> affinity (<i>P</i><sub>50</sub> = 0.9 torr) was independent of S-nitrosation. O<sub>2</sub> dissociation rates (<i>k</i><sub>off</sub>) of trout and salmon Mbs were not altered when Cys were in the SNO or <i>N</i>-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O<sub>2</sub> affinity by raising the O<sub>2</sub> association rate (<i>k</i><sub>on</sub>). Taken together, these results indicate that O<sub>2</sub>-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O<sub>2</sub> entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb <i>in vivo</i> is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.</p></div

    Amino acid sequence alignment of salmon, trout, tuna, carp Mb1 and Mb2 and human Mb shows variable number and position of Cys residues (highlighted).

    No full text
    <p>Mb sequences have been retrieved from Pub Med (Atlantic salmon: Atlantic salmon: GenBank, ACM09229.1, rainbow trout: GenBank, BAI45225.1, yellowfin tuna: GenBank: AAG02112.1, common carp Mb1: UniProtKB/Swiss-Prot, P02204.2, common carp Mb2: GenBank: ABC69306.1, human: NCBI Reference Sequence: NP_976311.1). The positions of the α-helices (A–C, E–H) are indicated and are based on the structure of yellowfin tuna Mb <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097012#pone.0097012-Schreiter1" target="_blank">[18]</a>.</p

    Salmon and tuna Mbs have faster reacting Cys than human Mb.

    No full text
    <p>Time course of the reaction of 4-PDS with accessible free thiols of salmon (black dots), tuna (white circles) and human Mb (grey circles) were measured in 50 mM Hepes, pH 7.2 at 20°C at a ratio of 4∶1 4-PDS/heme. Data fittings by double (salmon) or single (tuna and human) exponential equations are indicated.</p

    S-nitrosation increases O<sub>2</sub> affinity of salmon and trout Mbs but not of tuna Mb and is functionally equivalent to modification by <i>N</i>-ethylmaleimide.

    No full text
    <p>A) O<sub>2</sub> equilibrium curves for tuna and salmon Mb and Mb-SNO and B) O<sub>2</sub> equilibrium curves for trout Mb, Mb-NEM and Mb-SNO, as indicated, measured in 50 mM Tris, 0.5 mM EDTA, pH 8.3 at 20°C. Mb-SNO data are from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097012#pone.0097012-Helbo1" target="_blank">[9]</a>.</p
    corecore