693 research outputs found

    Pillows as adaptive interfaces in ambient environments

    Get PDF
    We have developed a set of small interactive throw pillows containing intelligent touch-sensing surfaces, in order to explore new ways to model the environment, participants, artefacts, and their interactions, in the context of expressive non-verbal interaction. We present the overall architecture of the environment, describing a model of the user, the interface (the interactive pillows and the devices it can interact with) and the context engine. We describe the representation and process modules of the context engine and demonstrate how they support real-time adaptation. We present an evaluation of the current prototype and conclude with plans for future work

    Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area

    Get PDF
    New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modeling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx [low - NO subscript x] and high-NOx [high - NO subscript x] conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April of 2003. The emission inventory, which uses as starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City reaching values above 40 μg [mu g] m−3 [m superscript -3]. The model predictions are compared with Aerosol Mass Spectrometry (AMS) observations and their Positive Matrix Factorization (PMF) analysis. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary, aged primary, and secondary organic aerosol production rates may lead to similar results. The model results suggest strongly that during the simulated period transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.Seventh Framework Programme (European Commission)European UnionMEGAPOLI (Project) (Grant agreement no. 212520)Molina Center for Energy and the EnvironmentUnited States. National Oceanic and Atmospheric Administration. Office of Global Programs (Grant NA08OAR4310565)National Science Foundation (U.S.) (Grant ATM-0528634)National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (DEFG0208ER64627

    The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN

    Get PDF
    From optical spectroscopy of X-ray sources observed as part of ChaMP, we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO, Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20% stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled extensive photometry from X-ray to radio bands. Together with our spectroscopic information, this enables us to derive detailed SEDs for our extragalactic sources. We fit a variety of templates to determine bolometric luminosities, and to constrain AGN and starburst components where both are present. While ~58% of X-ray Seyferts require a starburst event to fit observed photometry only 26% of the X-ray QSO population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z>1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star-formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO candidates. Also we have identified the highest redshift (z=5.4135) X-ray selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data table and README file can be found online at http://hea-www.harvard.edu/~pgreen/Papers.htm

    Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Get PDF
    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx) [(NO subscript x)], benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5) [(PM subscript 2.5)], and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx [NO subscript x] and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx [NO subscript x], 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5 [PM subscript 2.5], and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx [NO subscript x] and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx [NO subscript x] and higher for VOCs. For NOx [NO subscript x], the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Grant DE-FG02-05ER63982)United States. National Aeronautics and Space AdministrationMolina Center for Energy and the Environmen

    An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation

    Get PDF
    MILAGRO (Megacity Initiative: Local And Global Research Observations) is an international collaborative project to examine the behavior and the export of atmospheric emissions from a megacity. The Mexico City Metropolitan Area (MCMA) – one of the world's largest megacities and North America's most populous city – was selected as the case study to characterize the sources, concentrations, transport, and transformation processes of the gases and fine particles emitted to the MCMA atmosphere and to evaluate the regional and global impacts of these emissions. The findings of this study are relevant to the evolution and impacts of pollution from many other megacities. The measurement phase consisted of a month-long series of carefully coordinated observations of the chemistry and physics of the atmosphere in and near Mexico City during March 2006, using a wide range of instruments at ground sites, on aircraft and satellites, and enlisting over 450 scientists from 150 institutions in 30 countries. Three ground supersites were set up to examine the evolution of the primary emitted gases and fine particles. Additional platforms in or near Mexico City included mobile vans containing scientific laboratories and mobile and stationary upward-looking lidars. Seven instrumented research aircraft provided information about the atmosphere over a large region and at various altitudes. Satellite-based instruments peered down into the atmosphere, providing even larger geographical coverage. The overall campaign was complemented by meteorological forecasting and numerical simulations, satellite observations and surface networks. Together, these research observations have provided the most comprehensive characterization of the MCMA's urban and regional atmospheric composition and chemistry that will take years to analyze and evaluate fully. In this paper we review over 120 papers resulting from the MILAGRO/INTEX-B Campaign that have been published or submitted, as well as relevant papers from the earlier MCMA-2003 Campaign, with the aim of providing a road map for the scientific community interested in understanding the emissions from a megacity such as the MCMA and their impacts on air quality and climate. This paper describes the measurements performed during MILAGRO and the results obtained on MCMA's atmospheric meteorology and dynamics, emissions of gases and fine particles, sources and concentrations of volatile organic compounds, urban and regional photochemistry, ambient particulate matter, aerosol radiative properties, urban plume characterization, and health studies. A summary of key findings from the field study is presented.Mexico. Comisión Ambiental MetropolitanaMexico. Ministry of the EnvironmentConsejo Nacional de Ciencia y Tecnología (Mexico)Petróleos MexicanosNational Science Foundation (U.S.). Atmospheric Chemistry ProgramAtmospheric Sciences Program (U.S.)United States. National Aeronautics and Space Administration. Radiation Science Progra

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp401524sWe have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a axis (1.3%). A second phase transition to phase III occurs at 13 GPa to a structure not yet determined. First-principles calculations have been unable to reproduce the isostructural phase transition, but they propose the stabilization of a spinel-type structure at 11 GPa. This phase is not detected in experiments probably because of the presence of kinetic barriers. Experiments and calculations therefore seem to indicate that a new structural and electronic description is required to model the properties of silver chromate.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ1551 4161893), by the MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva Fellowship Program for its financial support. Diamond and ALBA Synchrotron Light Sources are acknowledged for provisions of beam time. We also thank Drs. Peral, Popescu, and Fauth for technical support.Santamaría Pérez, D.; Bandiello, E.; Errandonea, D.; Ruiz-Fuertes, J.; Gomis Hilario, O.; Sans, JÁ.; Manjón Herrera, FJ.... (2013). Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties. Journal of Physical Chemistry C. 117(23):12239-12248. https://doi.org/10.1021/jp401524sS12239122481172

    Inhibition of Glioblastoma Growth by the Thiadiazolidinone Compound TDZD-8

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Thiadiazolidinones (TDZD) are small heterocyclic compounds first described as non-ATP competitive inhibitors of glycogen synthase kinase 3 beta (GSK-3 beta). In this study, we analyzed the effects of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5- dione (TDZD-8), on murine GL261 cells growth in vitro and on the growth of established intracerebral murine gliomas in vivo. [Methodology/Principal Findings]: Our data show that TDZD-8 decreased proliferation and induced apoptosis of GL261 glioblastoma cells in vitro, delayed tumor growth in vivo, and augmented animal survival. These effects were associated with an early activation of extracellular signal-regulated kinase (ERK) pathway and increased expression of EGR-1 and p21 genes. Also, we observed a sustained activation of the ERK pathway, a concomitant phosphorylation and activation of ribosomal S6 kinase (p90RSK) and an inactivation of GSK-3 beta by phosphorylation at Ser 9. Finally, treatment of glioblastoma stem cells with TDZD-8 resulted in an inhibition of proliferation and self-renewal of these cells. [Conclusions/Significance]: Our results suggest that TDZD-8 uses a novel mechanism to target glioblastoma cells, and that malignant progenitor population could be a target of this compound.This work was supported by the Ministerio de Educacion y Ciencia grant SAF2007-62811 (to A.P.-C.). CIBERNED is funded by the Instituto de Salud Carlos III. JA.M.-G. and M.S.-S. are fellows of CIBERNED. D.A.-M. is a fellow of the Consejo Superior de Investigaciones Científicas.Peer reviewe

    The Spanish Infrared Camera onboard the EUSO-BALLOON (CNES) flight on August 24, 2014

    Get PDF
    The EUSO-Balloon (CNES) campaign was held during Summer 2014 with a launch on August 24. In the gondola, next to the Photo Detector Module (PDM), a completely isolated Infrared camera was allocated. Also, a helicopter which shooted flashers flew below the balloon. We have retrieved the Cloud Top Height (CTH) with the IR camera, and also the optical depth of the nonclear atmosphere have been inferred with two approaches: The first one is with the comparison of the brightness temperature of the cloud and the real temperature obtained after the pertinent corrections. The second one is by measuring the detected signal from the helicopter flashers by the IR Camera, considering the energy of the flashers and the location of the helicopter
    corecore