52 research outputs found

    Couplage des procédés de conversion des biomasses agro-alimentaires : récupération du méthane, préparation des matériaux carbonés poreux fonctionnalisés et leurs applications pour la dépollution des milieux aqueux

    No full text
    Herein, hybrid and clean process, for the valorization and treatment of agri-food biomasses by both biochemical and thermochemical conversion processeswas used. Indeed, the anaerobic co-digestion as a biochemical conversion process was used to recovery green methane energy from these biomasses (152.56 ± 1.24 L.CH4/KgSV). In addition, thermochemical conversion process was investigated to prepare porous carbon (PC) from residual bio-digestate, which made it possible to reduce the side effects of this co-product.Subsequently, the porous carbon was impregnated with iron oxide nanoparticles (PC@Fe3O4, carbon nanocomposite) by using non-covalent functionalization approach, then immobilized inside a membrane layer formed by chemical crosslinking process, between the alginate and Ca2+ metals cations (PC@Fe3O4@Alginate, magnetic hydrogels). These kinds of materials have enabled us to replace the filtration process with that of simple gravimetric settling during the adsorption process. In addition, the grafting of the amino groups on the surface of the prepared porous carbon was carried out via amidation reaction under ultrasound waves, using ethylenediamine as a chemical modifier. This latter was selected for the chemical covalent functionalization of our porous carbon (PC-ED/1.5) under very mild temperature conditions (40 °C). Thus, membranes based on PC-ED/1.5 were developed by chemical crosslinking between alginate and metal cations of Ca2+. Prepared carbons based materials have shown strong mass recovery performance in aqueous media and can thus simultaneously provide rational adsorption performance and recycling stability towards heavy metals and organic pollutants.Dans ce travail, nous avons dĂ©veloppĂ© un procĂ©dĂ© hybride et propre, qui permet la valorisation et le traitement des biomasses agro-alimentaires par conversion biochimique et thermochimique dans le cadre d’une Ă©conomie circulaire. En effet, la Co-digestion anaĂ©robie des biomasses organiques agro-alimentaires permet la conversion biochimique de ces dĂ©chets et la production de l’énergie sous la forme de mĂ©thane (152.56 ± 1.24 L.CH4/KgSV). De plus, le bio-digestat rĂ©siduel a Ă©tĂ© utilisĂ© pour la prĂ©paration du carbone poreux (PC) par conversion thermochimique, ce qui a permis de rĂ©duire les effets secondaires de ce coproduit. Par la suite, le carbone poreux a Ă©tĂ© imprĂ©gnĂ© par des nanoparticules d’oxyde de fer (PC@Fe3O4, nanocomposite du carbone) par fonctionnalisation non covalente, puis immobilisĂ© a l’intĂ©rieure d’une couche membranaire formĂ©e par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+ (PC@Fe3O4@Alginate, hydrogels magnĂ©tiques). Ces prĂ©parations nous ont permis de remplacer le procĂ©dĂ© de filtration par celui d’une dĂ©cantation gravimĂ©trique simple au cours de processus de l’adsorption. De plus, le greffage des groupes amino sur la surface du carbone poreux prĂ©parĂ© a Ă©tĂ© rĂ©alisĂ© via une rĂ©action d’amidation et sous ultrasons, en utilisant l’éthylĂšnediamine comme modificateur chimique. Ce dernier a Ă©tĂ© sĂ©lectionnĂ© pour la fonctionnalisation covalente de notre carbone poreux (PC-ED/1.5) dans des conditions de tempĂ©rature trĂšs douces (40 °C). Ainsi, des membranes a base du PC-ED/1.5 ont Ă©tĂ© Ă©laborĂ© par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+. Les deux principaux matĂ©riaux, PC@Fe3O4 et PC@Fe3O4@Alginate ont montrĂ© une forte performance de rĂ©cupĂ©ration de masse dans les milieux aqueux. Ainsi fournir simultanĂ©ment des performances d’adsorption rationnelles et une stabilitĂ© de recyclage vis-Ă -vis des polluants organiques et mĂ©taux lourds

    Coupling of organic agri-food biomass conversion processes : methane recovery, preparation of functionalized porous carbon materials and their applications for the depollution of aqueous media

    No full text
    Dans ce travail, nous avons dĂ©veloppĂ© un procĂ©dĂ© hybride et propre, qui permet la valorisation et le traitement des biomasses agro-alimentaires par conversion biochimique et thermochimique dans le cadre d’une Ă©conomie circulaire. En effet, la Co-digestion anaĂ©robie des biomasses organiques agro-alimentaires permet la conversion biochimique de ces dĂ©chets et la production de l’énergie sous la forme de mĂ©thane (152.56 ± 1.24 L.CH4/KgSV). De plus, le bio-digestat rĂ©siduel a Ă©tĂ© utilisĂ© pour la prĂ©paration du carbone poreux (PC) par conversion thermochimique, ce qui a permis de rĂ©duire les effets secondaires de ce coproduit. Par la suite, le carbone poreux a Ă©tĂ© imprĂ©gnĂ© par des nanoparticules d’oxyde de fer (PC@Fe3O4, nanocomposite du carbone) par fonctionnalisation non covalente, puis immobilisĂ© a l’intĂ©rieure d’une couche membranaire formĂ©e par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+ (PC@Fe3O4@Alginate, hydrogels magnĂ©tiques). Ces prĂ©parations nous ont permis de remplacer le procĂ©dĂ© de filtration par celui d’une dĂ©cantation gravimĂ©trique simple au cours de processus de l’adsorption. De plus, le greffage des groupes amino sur la surface du carbone poreux prĂ©parĂ© a Ă©tĂ© rĂ©alisĂ© via une rĂ©action d’amidation et sous ultrasons, en utilisant l’éthylĂšnediamine comme modificateur chimique. Ce dernier a Ă©tĂ© sĂ©lectionnĂ© pour la fonctionnalisation covalente de notre carbone poreux (PC-ED/1.5) dans des conditions de tempĂ©rature trĂšs douces (40 °C). Ainsi, des membranes a base du PC-ED/1.5 ont Ă©tĂ© Ă©laborĂ© par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+. Les deux principaux matĂ©riaux, PC@Fe3O4 et PC@Fe3O4@Alginate ont montrĂ© une forte performance de rĂ©cupĂ©ration de masse dans les milieux aqueux. Ainsi fournir simultanĂ©ment des performances d’adsorption rationnelles et une stabilitĂ© de recyclage vis-Ă -vis des polluants organiques et mĂ©taux lourds.Herein, hybrid and clean process, for the valorization and treatment of agri-food biomasses by both biochemical and thermochemical conversion processeswas used. Indeed, the anaerobic co-digestion as a biochemical conversion process was used to recovery green methane energy from these biomasses (152.56 ± 1.24 L.CH4/KgSV). In addition, thermochemical conversion process was investigated to prepare porous carbon (PC) from residual bio-digestate, which made it possible to reduce the side effects of this co-product.Subsequently, the porous carbon was impregnated with iron oxide nanoparticles (PC@Fe3O4, carbon nanocomposite) by using non-covalent functionalization approach, then immobilized inside a membrane layer formed by chemical crosslinking process, between the alginate and Ca2+ metals cations (PC@Fe3O4@Alginate, magnetic hydrogels). These kinds of materials have enabled us to replace the filtration process with that of simple gravimetric settling during the adsorption process. In addition, the grafting of the amino groups on the surface of the prepared porous carbon was carried out via amidation reaction under ultrasound waves, using ethylenediamine as a chemical modifier. This latter was selected for the chemical covalent functionalization of our porous carbon (PC-ED/1.5) under very mild temperature conditions (40 °C). Thus, membranes based on PC-ED/1.5 were developed by chemical crosslinking between alginate and metal cations of Ca2+. Prepared carbons based materials have shown strong mass recovery performance in aqueous media and can thus simultaneously provide rational adsorption performance and recycling stability towards heavy metals and organic pollutants

    Conjugated polymers templated carbonization to design N, S co-doped finely tunable carbon for enhanced synergistic catalysis

    No full text
    International audienceEfficient generation of 1O2 nonradical species from persulfate (PS) is demonstrated during heterogeneous catalysis systems based on the use of new Nitrogen and Sulfur doped carbons (NC, SC and NSC), as prepared by direct carbonization of polyaniline/polythiophene conjugated polymers at 800 °C. Complete organic molecules degradations were achieved with high mineralization rate (∌70%) for all systems, over a wide pH range (2.6∌9.5) in the presence of PS. Interestingly, the synergistic effect occurring between the N-Graphitic and the S-Thiophenic sites, modulates the surface electron density toward basic carbon structure (N∌4.76 at% and S∌3.87 at%, with SBET∌251 m2 g−1), leads to increases of the adsorption abilities and the reaction rate constant (from 0.076 to 0.338 min−1), and boosts the carbocatalyst' stability. Our discovery sheds new light on new systems promoting the Fenton-like oxidation process by 1O2 nonradical species, it may be a long-lasting sustainable environmentally strategy for water remediation
    • 

    corecore