60 research outputs found

    Chem. Commun.

    Get PDF
    Hybrid nanometric helical structures formed by the molecular assemblies of dicationic gemini surfactants with tartrate counterions covered with helical silica walls interact differently with matching or mismatching enantiomers of the tartrate. The difference of the interaction is based on the cooperativity between the chiral crystalline gemini surfactant molecular organization/conformation and the rigid chiral nanospace formed by the helical silica wall

    Using machine learning techniques in developing an autonomous network orchestration scheme in 5g networks

    Get PDF
    Network Orchestrators are the brains of 5G networks. The orchestrator is responsible for the orchestration and management of Network Function Virtualisation Infrastructure (NFVI), understanding network services on NFVI and software resources. The International Telecommunication Union (ITU) have categorized three main 5G network services for the orchestration. So called, Enhanced Mobile Broadband (eMBB), Ultra-reliable and Low-latency Communications (uRLLC) and Massive Machine Type Communications (mMTC). Categorizing the network is achieved in 5G by a method called network slicing. In the future, a device connecting to a 5G network will be in one of three slices (eMBB, uRLLC and mMTC) based on network characteristics. The focus of this dissertation goes to the eMBB slice. Normally day-today internet users will use the eMBB slices. Thus, all the daily internet access such as watching YouTube videos, making Skype video calls, calling via WhatsApp, downloading files, listening to online radio and whatnot will happen via eMBB slice. However, this approach neglects the importance of the web application a user is using in the eMBB slice. For example, a family doctor may give first aid assistance via a Skype video call in an emergency situation. Thus the call of the doctor, in this case, should be prioritized over other normal daily web tasks. Thus, there is a requirement of prioritizing usual web-tasks in certain scenarios which eMBB slice neglects. It is possible to detect websites or web plications with modern-day technologies. Hence, these type of website detection algorithms can be improved to detect web-tasks (Skype voice calling, Skype video calling, etc...) to provide a separate slice within eMBB slices upon doctor's request. The goal of this study is to identifying web-tasks by capturing the network data packets flowing in and out of the system and perform an application-based classification by using machine learning techniques. After the classification, data was fed to the 5G Orchestrator or to the 5G Core. The Orchestrator will allocate a number of Network Function Virtual Machines to provide best quality of service (QoS) based on generated slice information. iv In this research, a Website Task Finger Printing (WTFP) algorithm is introduced to identify web traffic (such as identifying if a user is watching a video on Facebook, rather than just detecting the website that they are viewing). Possible applications of the developed algorithm vary from 5G ultra slicing to network security. This study delves deeper into Website Finger Printing (WFP). Traditional papers only describe how to identify websites by using statistical analysis, whereas this study shows how we can identify what task a user is performing rather than just which website they are currently visiting. The identifier captures the inbound and outbound data and then uses the packet length histogram as the main feature. After that, application-based features were extracted by using heuristic logical filters to prepare a feature vector for the Machine Learning (ML) algorithm. A trained Multi-layer Perceptron (MLP) based Artificial Neural Network (ANN) was selected as the classifier after comparing results with Support Vector Machine (SVM), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). The MLP algorithm was able to classify website tasks with 95.50% accuracy. After classification, the classified class was sent to the 5G Orchestrator, then it refers to programed Network Service Descriptor and based on our specifications generates a new slice by using Network Slice Engine (NSE). After that, it monitorsthe present bitrate of the slice by using Zabbix. Next, the Orchestrator either increase or decrease the bitrate to give the optimum Quality of Service (QoS) by using Auto Scaling Engine (ASE). The algorithm also used to generate specific QoS by using Open5G Core. Therefore, this study shows that it is possible to allocate slices based on webtasks in 5G Mobile network thus proposing to investigate further; to enable web-task based slicing for the future mobile networks

    Couplage des procédés de conversion des biomasses agro-alimentaires : récupération du méthane, préparation des matériaux carbonés poreux fonctionnalisés et leurs applications pour la dépollution des milieux aqueux

    No full text
    Herein, hybrid and clean process, for the valorization and treatment of agri-food biomasses by both biochemical and thermochemical conversion processeswas used. Indeed, the anaerobic co-digestion as a biochemical conversion process was used to recovery green methane energy from these biomasses (152.56 ± 1.24 L.CH4/KgSV). In addition, thermochemical conversion process was investigated to prepare porous carbon (PC) from residual bio-digestate, which made it possible to reduce the side effects of this co-product.Subsequently, the porous carbon was impregnated with iron oxide nanoparticles (PC@Fe3O4, carbon nanocomposite) by using non-covalent functionalization approach, then immobilized inside a membrane layer formed by chemical crosslinking process, between the alginate and Ca2+ metals cations (PC@Fe3O4@Alginate, magnetic hydrogels). These kinds of materials have enabled us to replace the filtration process with that of simple gravimetric settling during the adsorption process. In addition, the grafting of the amino groups on the surface of the prepared porous carbon was carried out via amidation reaction under ultrasound waves, using ethylenediamine as a chemical modifier. This latter was selected for the chemical covalent functionalization of our porous carbon (PC-ED/1.5) under very mild temperature conditions (40 °C). Thus, membranes based on PC-ED/1.5 were developed by chemical crosslinking between alginate and metal cations of Ca2+. Prepared carbons based materials have shown strong mass recovery performance in aqueous media and can thus simultaneously provide rational adsorption performance and recycling stability towards heavy metals and organic pollutants.Dans ce travail, nous avons dĂ©veloppĂ© un procĂ©dĂ© hybride et propre, qui permet la valorisation et le traitement des biomasses agro-alimentaires par conversion biochimique et thermochimique dans le cadre d’une Ă©conomie circulaire. En effet, la Co-digestion anaĂ©robie des biomasses organiques agro-alimentaires permet la conversion biochimique de ces dĂ©chets et la production de l’énergie sous la forme de mĂ©thane (152.56 ± 1.24 L.CH4/KgSV). De plus, le bio-digestat rĂ©siduel a Ă©tĂ© utilisĂ© pour la prĂ©paration du carbone poreux (PC) par conversion thermochimique, ce qui a permis de rĂ©duire les effets secondaires de ce coproduit. Par la suite, le carbone poreux a Ă©tĂ© imprĂ©gnĂ© par des nanoparticules d’oxyde de fer (PC@Fe3O4, nanocomposite du carbone) par fonctionnalisation non covalente, puis immobilisĂ© a l’intĂ©rieure d’une couche membranaire formĂ©e par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+ (PC@Fe3O4@Alginate, hydrogels magnĂ©tiques). Ces prĂ©parations nous ont permis de remplacer le procĂ©dĂ© de filtration par celui d’une dĂ©cantation gravimĂ©trique simple au cours de processus de l’adsorption. De plus, le greffage des groupes amino sur la surface du carbone poreux prĂ©parĂ© a Ă©tĂ© rĂ©alisĂ© via une rĂ©action d’amidation et sous ultrasons, en utilisant l’éthylĂšnediamine comme modificateur chimique. Ce dernier a Ă©tĂ© sĂ©lectionnĂ© pour la fonctionnalisation covalente de notre carbone poreux (PC-ED/1.5) dans des conditions de tempĂ©rature trĂšs douces (40 °C). Ainsi, des membranes a base du PC-ED/1.5 ont Ă©tĂ© Ă©laborĂ© par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+. Les deux principaux matĂ©riaux, PC@Fe3O4 et PC@Fe3O4@Alginate ont montrĂ© une forte performance de rĂ©cupĂ©ration de masse dans les milieux aqueux. Ainsi fournir simultanĂ©ment des performances d’adsorption rationnelles et une stabilitĂ© de recyclage vis-Ă -vis des polluants organiques et mĂ©taux lourds

    Coupling of organic agri-food biomass conversion processes : methane recovery, preparation of functionalized porous carbon materials and their applications for the depollution of aqueous media

    No full text
    Dans ce travail, nous avons dĂ©veloppĂ© un procĂ©dĂ© hybride et propre, qui permet la valorisation et le traitement des biomasses agro-alimentaires par conversion biochimique et thermochimique dans le cadre d’une Ă©conomie circulaire. En effet, la Co-digestion anaĂ©robie des biomasses organiques agro-alimentaires permet la conversion biochimique de ces dĂ©chets et la production de l’énergie sous la forme de mĂ©thane (152.56 ± 1.24 L.CH4/KgSV). De plus, le bio-digestat rĂ©siduel a Ă©tĂ© utilisĂ© pour la prĂ©paration du carbone poreux (PC) par conversion thermochimique, ce qui a permis de rĂ©duire les effets secondaires de ce coproduit. Par la suite, le carbone poreux a Ă©tĂ© imprĂ©gnĂ© par des nanoparticules d’oxyde de fer (PC@Fe3O4, nanocomposite du carbone) par fonctionnalisation non covalente, puis immobilisĂ© a l’intĂ©rieure d’une couche membranaire formĂ©e par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+ (PC@Fe3O4@Alginate, hydrogels magnĂ©tiques). Ces prĂ©parations nous ont permis de remplacer le procĂ©dĂ© de filtration par celui d’une dĂ©cantation gravimĂ©trique simple au cours de processus de l’adsorption. De plus, le greffage des groupes amino sur la surface du carbone poreux prĂ©parĂ© a Ă©tĂ© rĂ©alisĂ© via une rĂ©action d’amidation et sous ultrasons, en utilisant l’éthylĂšnediamine comme modificateur chimique. Ce dernier a Ă©tĂ© sĂ©lectionnĂ© pour la fonctionnalisation covalente de notre carbone poreux (PC-ED/1.5) dans des conditions de tempĂ©rature trĂšs douces (40 °C). Ainsi, des membranes a base du PC-ED/1.5 ont Ă©tĂ© Ă©laborĂ© par rĂ©ticulation chimique entre l’alginate et des cations mĂ©talliques de Ca2+. Les deux principaux matĂ©riaux, PC@Fe3O4 et PC@Fe3O4@Alginate ont montrĂ© une forte performance de rĂ©cupĂ©ration de masse dans les milieux aqueux. Ainsi fournir simultanĂ©ment des performances d’adsorption rationnelles et une stabilitĂ© de recyclage vis-Ă -vis des polluants organiques et mĂ©taux lourds.Herein, hybrid and clean process, for the valorization and treatment of agri-food biomasses by both biochemical and thermochemical conversion processeswas used. Indeed, the anaerobic co-digestion as a biochemical conversion process was used to recovery green methane energy from these biomasses (152.56 ± 1.24 L.CH4/KgSV). In addition, thermochemical conversion process was investigated to prepare porous carbon (PC) from residual bio-digestate, which made it possible to reduce the side effects of this co-product.Subsequently, the porous carbon was impregnated with iron oxide nanoparticles (PC@Fe3O4, carbon nanocomposite) by using non-covalent functionalization approach, then immobilized inside a membrane layer formed by chemical crosslinking process, between the alginate and Ca2+ metals cations (PC@Fe3O4@Alginate, magnetic hydrogels). These kinds of materials have enabled us to replace the filtration process with that of simple gravimetric settling during the adsorption process. In addition, the grafting of the amino groups on the surface of the prepared porous carbon was carried out via amidation reaction under ultrasound waves, using ethylenediamine as a chemical modifier. This latter was selected for the chemical covalent functionalization of our porous carbon (PC-ED/1.5) under very mild temperature conditions (40 °C). Thus, membranes based on PC-ED/1.5 were developed by chemical crosslinking between alginate and metal cations of Ca2+. Prepared carbons based materials have shown strong mass recovery performance in aqueous media and can thus simultaneously provide rational adsorption performance and recycling stability towards heavy metals and organic pollutants
    • 

    corecore