121 research outputs found
The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis
In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease
Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis
The biology of brain microvascular pericytes is an active area of research and discovery, as their interaction with the endothelium is critical for multiple aspects of cerebrovascular function. There is growing evidence that pericyte loss or dysfunction is involved in the pathogenesis of Alzheimer’s disease, vascular dementia, ischemic stroke and brain injury. However, strategies to mitigate or compensate for this loss remain limited. In this review, we highlight a novel finding that pericytes in the adult brain are structurally dynamic in vivo, and actively compensate for loss of endothelial coverage by extending their far-reaching processes to maintain contact with regions of exposed endothelium. Structural remodeling of pericytes may present an opportunity to foster pericyte-endothelial communication in the adult brain and should be explored as a potential means to counteract pericyte loss in dementia and cerebrovascular disease. We discuss the pathophysiological consequences of pericyte loss on capillary function, and the biochemical pathways that may control pericyte remodeling. We also offer guidance for observing pericytes in vivo, such that pericyte structural remodeling can be more broadly studied in mouse models of cerebrovascular disease
The Autism Symptom Dimensions Questionnaire: Development and psychometric evaluation of a new, open-source measure of autism symptomatology
Aim: To describe the development and initial psychometric evaluation of a new, freely available measure, the Autism Symptom Dimensions Questionnaire (ASDQ).
Method: After development and revision of an initial 33-item version, informants completed a revised 39-item version of the ASDQ on 1467 children and adolescents (aged 2-17 years), including 104 with autism spectrum disorder (ASD).
Results: The initial 33-item version of the ASDQ had good reliability and construct validity. However, only four specific symptom factors were identified, potentially due to an insufficient number of items. Factor analyses of the expanded instrument identified a general ASD factor and nine specific symptom factors with good measurement invariance across demographic groups. Scales showed good-to-excellent overall and conditional reliability. Exploratory analyses of predictive validity for ASD versus neurotypical and other developmental disability diagnoses indicated good accuracy for population and at-risk contexts.
Interpretation: The ASDQ is a free and psychometrically sound informant report instrument with good reliability of measurement across a continuous range of scores and preliminary evidence of predictive validity. The measure may be a useful alternative to existing autism symptom measures but further studies with comparison of clinical diagnoses using criterion-standard instruments are needed
Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure
Deterioration of brain capillary flow and architecture is a hallmark of aging and dementia. It remains unclear how loss of brain pericytes in these conditions contributes to capillary dysfunction. Here, we conduct cause-and-effect studies by optically ablating pericytes in adult and aged mice in vivo. Focal pericyte loss induces capillary dilation without blood-brain barrier disruption. These abnormal dilations are exacerbated in the aged brain, and result in increased flow heterogeneity in capillary networks. A subset of affected capillaries experience reduced perfusion due to flow steal. Some capillaries stall in flow and regress, leading to loss of capillary connectivity. Remodeling of neighboring pericytes restores endothelial coverage and vascular tone within days. Pericyte remodeling is slower in the aged brain, resulting in regions of persistent capillary dilation. These findings link pericyte loss to disruption of capillary flow and structure. They also identify pericyte remodeling as a therapeutic target to preserve capillary flow dynamics
A Guide to Delineate the Logic of Neurovascular Signaling in the Brain
The neurovascular system may be viewed as a distributed nervous system within the brain. It transforms local neuronal activity into a change in the tone of smooth muscle that lines the walls of arterioles and microvessels. We review the current state of neurovascular coupling, with an emphasis on signaling molecules that convey information from neurons to neighboring vessels. At the level of neocortex, this coupling is mediated by: (i) a likely direct interaction with inhibitory neurons, (ii) indirect interaction, via astrocytes, with excitatory neurons, and (iii) fiber tracts from subcortical layers. Substantial evidence shows that control involves competition between signals that promote vasoconstriction versus vasodilation. Consistent with this picture is evidence that, under certain circumstances, increased neuronal activity can lead to vasoconstriction rather than vasodilation. This confounds naĂŻve interpretations of functional brain images. We discuss experimental approaches to detect signaling molecules in vivo with the goal of formulating an empirical basis for the observed logic of neurovascular control
Expanding the horizon of research into the pathogenesis of the white matter diseases: Proceedings of the 2021 Annual Workshop of the Albert Research Institute for White Matter and Cognition
White matter pathologies are critically involved in the etiology of vascular cognitive impairment–dementia (VCID), Alzheimer’s disease (AD), and Alzheimer’s disease and related diseases (ADRD), and therefore need to be considered a treatable target (Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793–4, [1]. To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of “The Albert Research Institute for White Matter and Cognition” in 2020. The first annual “Institute” meeting was held virtually on March 3–4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust–sponsored workshops (Barone et al. in J Transl Med 14:1–14, [2]; Sorond et al. in GeroScience 42:81–96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop
Mechanisms controlling anaemia in Trypanosoma congolense infected mice.
Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection
Simplified Models for LHC New Physics Searches
This document proposes a collection of simplified models relevant to the
design of new-physics searches at the LHC and the characterization of their
results. Both ATLAS and CMS have already presented some results in terms of
simplified models, and we encourage them to continue and expand this effort,
which supplements both signature-based results and benchmark model
interpretations. A simplified model is defined by an effective Lagrangian
describing the interactions of a small number of new particles. Simplified
models can equally well be described by a small number of masses and
cross-sections. These parameters are directly related to collider physics
observables, making simplified models a particularly effective framework for
evaluating searches and a useful starting point for characterizing positive
signals of new physics. This document serves as an official summary of the
results from the "Topologies for Early LHC Searches" workshop, held at SLAC in
September of 2010, the purpose of which was to develop a set of representative
models that can be used to cover all relevant phase space in experimental
searches. Particular emphasis is placed on searches relevant for the first
~50-500 pb-1 of data and those motivated by supersymmetric models. This note
largely summarizes material posted at http://lhcnewphysics.org/, which includes
simplified model definitions, Monte Carlo material, and supporting contacts
within the theory community. We also comment on future developments that may be
useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results
from "Topologies for Early LHC Searches" workshop (SLAC, September 2010).
Supplementary material can be found at http://lhcnewphysics.or
The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament
We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of B_pos=6.6±4.7 mG, where δB_pos=4.7 mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of ~1.7×10^-7 Jm^-3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (~10^-7 Jm^-3), and to the energy density in the Orion BN/KL outflow (~10^-7 Jm^-3). We find that neither the Alfvén velocity in OMC 1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ~500-year lifetime of the outflow. Hence, we propose that the hour-glass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically-symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically-supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa
Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements
We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 μG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical
- …