11 research outputs found

    An unstructured-mesh atmospheric model for nonhydrostatic dynamics

    Get PDF
    A three-dimensional semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic anelastic equations, suitable for simulation of small-to-mesoscale atmospheric flows. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and admitting unstructured meshes with arbitrarily shaped cells. The numerical advancements are evaluated with canonical simulations of convective planetary boundary layer and strongly (stably) stratified orographic flows, epitomizing diverse aspects of highly nonlinear nonhydrostatic dynamics. The unstructured-mesh solutions are compared to equivalent results generated with an established structured-grid model and observation. © 2013 Elsevier Inc

    Towards an Integrated Multiscale Simulation of Turbulent Clouds on PetaScale Computers

    Get PDF
    The development of precipitating warm clouds is affected by several effects of small-scale air turbulence including enhancement of droplet-droplet collision rate by turbulence, entrainment and mixing at the cloud edges, and coupling of mechanical and thermal energies at various scales. Large-scale computation is a viable research tool for quantifying these multiscale processes. Specifically, top-down large-eddy simulations (LES) of shallow convective clouds typically resolve scales of turbulent energy-containing eddies while the effects of turbulent cascade toward viscous dissipation are parameterized. Bottom-up hybrid direct numerical simulations (HDNS) of cloud microphysical processes resolve fully the dissipation-range flow scales but only partially the inertial subrange scales. it is desirable to systematically decrease the grid length in LES and increase the domain size in HDNS so that they can be better integrated to address the full range of scales and their coupling. In this paper, we discuss computational issues and physical modeling questions in expanding the ranges of scales realizable in LES and HDNS, and in bridging LES and HDNS. We review our on-going efforts in transforming our simulation codes towards PetaScale computing, in improving physical representations in LES and HDNS, and in developing better methods to analyze and interpret the simulation results

    The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    Get PDF
    To bridge the gaps between traditional mesoscale modeling and microscale modeling, the National Center for Atmospheric Research (NCAR), in collaboration with other agencies and research groups, has developed an integrated urban modeling system coupled to the Weather Research and Forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modeling system consists of: 1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, 2) coupling to fine-scale Computational Fluid Dynamic (CFD) Reynolds-averaged Navier–Stokes (RANS) and Large-Eddy Simulation (LES) models for Transport and Dispersion (T&D) applications, 3) procedures to incorporate high-resolution urban land-use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and 4) an urbanized high-resolution land-data assimilation system (u-HRLDAS). This paper provides an overview of this modeling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modeling system illustrate its promising utility, as a regional climate-modeling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements

    Scientific challenges of convective-scale numerical weather prediction

    Get PDF
    Numerical weather prediction (NWP) models are increasing in resolution and becoming capable of explicitly representing individual convective storms. Is this increase in resolution leading to better forecasts? Unfortunately, we do not have sufficient theoretical understanding about this weather regime to make full use of these NWPs. After extensive efforts over the course of a decade, convective–scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three–dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km) with slowly–evolving semi–geostrophic dynamics and relatively long predictability on the order of a few days. Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial–differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues: the Liouville principle and Bayesian probability for probabilistic forecasts; and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows. The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided

    The ESCAPE project: Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    Abstract. In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche à l'Opérationnel à Meso-Echelle) and ALADIN (Aire Limitée Adaptation Dynamique Développement International); and COSMO–EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU–GPU arrangements

    Simulations of Gravity Wave Induced Turbulence Using 512 PE Cray T3E

    No full text
    A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate gravity wave induced turbulence at mesopause altitudes. This paper extends our earlier 2D study reported in the literature to three spatial dimensions while maintaining fine resolution required to capture essential physics of the wave breaking. The calculations were performed on the 512 processor Cray T3E machine at the National Energy Research Scientific Computing Center (NERSC) in Berkeley. The physical results of this study clearly demonstrate advantages of highly parallel technologies. We briefly outline the physical outcome of the study, as well as compare the relative model performance across several machines using both MPI and Shmem communication software
    corecore