9 research outputs found

    Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014-2020

    Get PDF
    ReviewThe objectives of the study were to estimate the current exposure to cadmium (Cd) in Europe, potential differences between the countries and geographic regions, determinants of exposure and to derive European exposure levels. The basis for this work was provided by the European Human Biomonitoring Initiative (HBM4EU) which established a framework for alignment of national or regional HBM studies. For the purpose of Cd exposure assessment, studies from 9 European countries (Iceland, Denmark, Poland, Czech Republic, Croatia, Portugal, Germany, France, Luxembourg) were included and urine of 20–39 years old adults sampled in the years 2014–2021 (n = 2510). The measurements in urine were quality assured by the HBM4EU quality assurance/quality control scheme, study participants' questionnaire data were post-harmonized. Spatially resolved external data, namely Cd concentrations in soil, agricultural areas, phosphate fertilizer application, traffic density and point source Cd release were collected for the respective statistical territorial unit (NUTS). There were no distinct geographic patterns observed in Cd levels in urine, although the data revealed some differences between the specific study sites. The levels of exposure were otherwise similar between two time periods within the last decade (DEMOCOPHES - 2011–2012 vs. HBM4EU Aligned Studies, 2014–2020). The age-dependent alert values for Cd in urine were exceeded by 16% of the study participants. Exceedances in the different studies and locations ranged from 1.4% up to 42%. The studies with largest extent of exceedance were from France and Poland. Association analysis with individual food consumption data available from participants’ questionnaires showed an important contribution of vegetarian diet to the overall exposure, with 35% higher levels in vegetarians as opposed to non-vegetarians. For comparison, increase in Cd levels due to smoking was 25%. Using NUTS2-level external data, positive associations between HBM data and percentage of cropland and consumption of Cd-containing mineral phosphate fertilizer were revealed, which indicates a significant contribution of mineral phosphate fertilizers to human Cd exposure through diet. In addition to diet, traffic and point source release were identified as significant sources of exposure in the study population. The findings of the study support the recommendation by EFSA to reduce Cd exposure as also the estimated mean dietary exposure of adults in the EU is close or slightly exceeding the tolerable weekly intake. It also indicates that regulations are not protecting the population sufficiently.The HBM4EU project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 733032. Co-funding for the HBM4EU Aligned Studies has been provided by the national programs: Sant´e Publique France and the French ministries of Health and the Environment (ESTEBAN, France); MEYS (No. LM2018121), and Cetocoen Plus project (CZ.02.1.01/0.0/ 0.0/15_003/0000469) (CELSPAC:YA, Czech Republic); the Ministry of Science and Higher Education of Poland (contract no.3764/H2020/ 2017/2) (POALES, Poland); Public Health Fund (Diet_HBM, Iceland); Croatian Institute of Public Health (HBM survey in Croatia); National Institute of Health Dr Ricardo Jorge (INSEF_ExpoQuim, Portugal); German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) (ESB, Germany); Luxembourg Institute of Health (LIH), the Laboratoire national de sant´e (human biomonitoring part), the Ministry of Higher Education and Research of Luxembourg and the Ministry of Health of Luxembourg (Oriscav-Lux2, Luxembourg); Candy Foundation (Nos. 2017–224 and 2020–344), Absalon Foundation (No. F-23653-01), The Danish Environmental Protection Agency (Miljøstyrelsen: MST-621-00012 Center on Endocrine Disrupters), The Research council of Capital Region of Denmark (No. E− 22717-11), Research council of Rigshospitalet (Nos. E− 22717-12, E− 22717-07, E− 22717-08), Aase og Ejnar Danielsens Fond (No. 10–001874), International Research and Research Training Centre for Male Reproduction and Child Health (EDMaRC, No. 1500321/1604357) (CPHMINIPUB (parents) and DYMS, Denmark). J.Kl. and L.A. thank the CETOCOEN EXCELLENCE project No. CZ.02.1.01/0.0/0.0/17_043/ 0009632 financed by MEYS for supportive background, and supported from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 857560.info:eu-repo/semantics/publishedVersio

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio

    Harmonized human biomonitoring in European children, teenagers and adults : EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12. Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12 . Publisher Copyright: © 2023 The AuthorsAs one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.Peer reviewe

    Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014–2020

    No full text
    The objectives of the study were to estimate the current exposure to cadmium (Cd) in Europe, potential differences between the countries and geographic regions, determinants of exposure and to derive European exposure levels. The basis for this work was provided by the European Human Biomonitoring Initiative (HBM4EU) which established a framework for alignment of national or regional HBM studies. For the purpose of Cd exposure assessment, studies from 9 European countries (Iceland, Denmark, Poland, Czech Republic, Croatia, Portugal, Germany, France, Luxembourg) were included and urine of 20-39 years old adults sampled in the years 2014-2021 (n = 2510). The measurements in urine were quality assured by the HBM4EU quality assurance/quality control scheme, study participants' questionnaire data were post-harmonized. Spatially resolved external data, namely Cd concentrations in soil, agricultural areas, phosphate fertilizer application, traffic density and point source Cd release were collected for the respective statistical territorial unit (NUTS). There were no distinct geographic patterns observed in Cd levels in urine, although the data revealed some differences between the specific study sites. The levels of exposure were otherwise similar between two time periods within the last decade (DEMOCOPHES - 2011-2012 vs. HBM4EU Aligned Studies, 2014-2020). The age-dependent alert values for Cd in urine were exceeded by 16% of the study participants. Exceedances in the different studies and locations ranged from 1.4% up to 42%. The studies with largest extent of exceedance were from France and Poland. Association analysis with individual food consumption data available from participants' questionnaires showed an important contribution of vegetarian diet to the overall exposure, with 35% higher levels in vegetarians as opposed to non-vegetarians. For comparison, increase in Cd levels due to smoking was 25%. Using NUTS2-level external data, positive associations between HBM data and percentage of cropland and consumption of Cd-containing mineral phosphate fertilizer were revealed, which indicates a significant contribution of mineral phosphate fertilizers to human Cd exposure through diet. In addition to diet, traffic and point source release were identified as significant sources of exposure in the study population. The findings of the study support the recommendation by EFSA to reduce Cd exposure as also the estimated mean dietary exposure of adults in the EU is close or slightly exceeding the tolerable weekly intake. It also indicates that regulations are not protecting the population sufficiently

    Current exposure to phthalates and DINCH in European children and adolescents - Results from the HBM4EU Aligned Studies 2014 to 2021.

    Get PDF
    Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ∼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 μg/L), MiBP (26.6 μg/L), and MEP (24.4 μg/L) and lowest for∑DiDP metabolites (1.91 μg/L) and ∑DINCH metabolites (3.57 μg/L). In adolescents highest GMs were found for MEP (43.3 μg/L), ∑DEHP metabolites (28.8 μg/L), and MiBP (25.6 μg/L) and lowest for ∑DiDP metabolites (= 2.02 μg/L) and ∑DINCH metabolites (2.51 μg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 733032 HBM4EU. PCB cohort was supported by the Ministry of Health of the Slovak Republic, project no. 2012/47-SZU-11 and the Slovak Research and Development Agency, project no. APVV-0571-12. PCB cohort follow-up received additional funding from the Ministry of Health of the Slovak Republic, program 07B0103. Regarding GerES V-sub (unweighted) the funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465). The Slovenian SLO-CRP study was co-financed by the Jozef Stefan Institute program P1- 0143, and a national project “Exposure of children and adolescents to selected chemicals through their habitat environment” (grant agree ment No. C2715-16-634802). Riksmaten Adolescents 2016-17 was performed by the Swedish Food Agency with financial support from the Swedish Environmental Protection Agency and the Swedish Civil Contingencies Agency. The BEA study was co-funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Insituto de Salud Carlos III (SEG 1321/15). The CROME study is co-funded by the European Commission research funds of Horizon 2020). The 3xG study is financed by NIRAS/ONDRAF (Belgian National Agency for Radioactive Waste and enriched Fissile Material), STORA (Study and Consultation Radioactive Waste Dessel) and MONA (Mols Overleg Nucleair Afval). FLEHS IV is commissioned and co-financed by the Government of Flanders, Department of Environment & Spatial Development. POLAES study was financially supported by the Ministry of Education and Science (project no. 3764/H2020/2017/2). The CELSPAC studies are supported by the MEYS (LM2018121, CZ.02.1.01/0.0/0.0/17_043/0009632 and CZ.02.1.01/0.0/0.0/15_003/0000469) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement (857560).S

    Harmonized human biomonitoring in European children, teenagers and adults : EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021).

    No full text

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)

    No full text
    corecore