67 research outputs found

    Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root

    Get PDF
    The aim of the present study is to investigate the influence of the laser hybrid welding parameters on the solidification cracks in the weld root for partial penetration welding. Welding trials were performed on thick-walled high-strength steels of grade S690QL under the same critical restraint intensity, with a variation of the welding velocity, wire feeding rate, and the focal position of the laser beam. It was ascertained that the welding velocity has a high impact on the solidification cracking phenomenon. A decrease in the welding speed leads to a reduction of the number of cracks in the weld root. The arc power has also a slight influence on the solidification cracking, while the change of the focal position of the laser beam shows also a remarkable effect. Besides, numerical simulation was performed to understand the thermomechanical behavior of the welds for different welding parameters to assist the interpretation of the experimental results.BMWi, 19582N, Investigation of the influence the restraint conditions on hot cracking in laser and laser-hybrid welding of thick structure steelsTU Berlin, Open-Access-Mittel - 202

    Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields

    Get PDF
    Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. Therefore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper, the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore, the latent heat of solid–liquid phase transition was taken into account and the solidification was modelled by the Carman–Kozeny equation for porous medium morphology. The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around 500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics

    Post-Weld Residual Stress Mitigation by Scanning of a Defocused Laser Beam

    Get PDF
    AbstractHigh welding residual stresses can cause service life reducing consequences. Even though many processes have been developed to reduce these stresses, they are only applicable for wider welds and simple component geometries or are cost-intensive, respectively. The presented method uses a defocused beam after welding for heating the material regions on both sides of the weld. In this way, the welding stresses are decreased without contacting the surfaces using the available equipment. Different process parameters could be used depending on the component geometry and the laser power. The mechanism and the influence of the process parameters were investigated by FEM-simulation and experiments on S355J2+N steel and showed a stress reduction of about 73%

    Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets

    Get PDF
    The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency

    Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in V. Avilov et al., Journal of Laser Applications 28, 022420 (2016) and may be found at https://doi.org/10.2351/1.4944103.Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56 kW for welding velocity of 1.0 and 0.5 m min−1, respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current (AC) power needed to completely compensate the sagging on the root side was found to be ≈1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min−1 was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible—the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW

    Detection of solidification crack formation in laser beam welding videos of sheet metal using neural networks

    Get PDF
    Laser beam welding has become widely applied in many industrial fields in recent years. Solidification cracks remain one of the most common welding faults that can prevent a safe welded joint. In civil engineering, convolutional neural networks (CNNs) have been successfully used to detect cracks in roads and buildings by analysing images of the constructed objects. These cracks are found in static objects, whereas the generation of a welding crack is a dynamic process. Detecting the formation of cracks as early as possible is greatly important to ensure high welding quality. In this study, two end-to-end models based on long short-term memory and three-dimensional convolutional networks (3D-CNN) are proposed for automatic crack formation detection. To achieve maximum accuracy with minimal computational complexity, we progressively modify the model to find the optimal structure. The controlled tensile weldability test is conducted to generate long videos used for training and testing. The performance of the proposed models is compared with the classical neural network ResNet-18, which has been proven to be a good transfer learning model for crack detection. The results show that our models can detect the start time of crack formation earlier, while ResNet-18 only detects cracks during the propagation stage

    The Spatial Development of the Rural Settlement of East Prussia: Kaliningrad Region

    Get PDF
    The present system of displacement of the Kaliningrad region's population results from a complicated historical process, during which the socio-economic, geopolitical and cultural conditions were repeatedly changed in which it was established. An analysis of the changes taking place at that time and now provides the basis for the preparation of forecasts of further transformation of the region's spatial environment, one of the most important tasks for specialists of the contemporary geographical science. In the publication, the authors examine the key historical stages of the creation of the modern system of displacement of the region's population and identify the key economic, political and social factors that had an impact on the process at various historical stages of development of East Prussia until 1945 and the contemporary Kaliningrad region. The so-called Nizhnenemanskaya lowland area was chosen as a local example of the transformation processes of the modern part of the Slavsk municipal district (north of the Kaliningrad region). The research results were obtained in the analysis of the cartographic material on the status of the area related to the study of three time stages, 1834-1960, 1914-1939 and 2010-2012. It became possible to compare the cartographic material featuring such a broad time horizon due to the project of the Russian Geographical Society ‘Post-War Changes in the Kaliningrad Region (based on Topographic Maps)'. Based on the performed analysis, at the end of the article the authors formulated the key forward-looking trends in the development of the Kaliningrad region's rural settlement taking into account the historical features of its foundation as well as the forecast of the social and economic development of the Russian exclave. Keywords: Kaliningrad region, East Prussia, settlement system, spatial organisation JEL Classifications: R00; R

    Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718

    Get PDF
    The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out

    The Effects of HLAW Parameters for One Side T-Joints in 15 mm Thickness Naval Steel

    Get PDF
    The present contribution is the first research reporting full penetration HLAW joints in 15 mm thick EH36 steel butt T-welds with square grooves on 2F welding position by single-sided welding. The effects of welding parameters were investigated to increase the quality of the joints. Conditions leading to defect-free full penetration welds fulfilling naval regulations includes a laser power of 12.5 kW, a welding speed of 1.6 m/min and the vertical laser offset distance from the flange of 1 mm. Advanced characterization of selected welds included a microstructural identification by optical microscopy, SEM, and XRD, revealing the presence of acicular, polygonal and Widmanstatten ferrite, lath martensite, and some retained austenite at FZ. Hardness and microhardness mapping tests showed values of 155 HV at base metal and 200 to 380 HV at the fusion zone connecting the web to the flange

    On the search for the origin of the bulge effect in high power laser beam welding

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Laser Applications 31, 022413 (2019) and may be found at https://doi.org/10.2351/1.5096133.The shape of the weld pool in laser beam welding plays a major role in understanding the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section, a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging cameras, a mid-wavelength infrared camera and a newly developed infrared camera working in the spectral range of 500 to 540 nm, making it perfectly suited for temperature measurements of molten materials. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermocapillary convection, natural convection, and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulge region. A good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface was found
    • …
    corecore