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Abstract

Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern

high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used

in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. There-

fore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper,

the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation

for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and elec-

tromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation

temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld

pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore,

the latent heat of solid-liquid phase transition was taken into account and the solidification was modelled by the Carman-Kozeny

equation for porous medium morphology.

The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields

depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced

by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around

500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics.

Keywords:

electromagnetic weld pool control, Hartmann effect, laser beam welding, Lorentz force, Marangoni flow, natural convection,
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1. Introduction

The availability of modern high power laser systems paved

the way for a variety of different welding applications into the

industrial praxis, e.g. in the automotive and naval industry

as well as for large-scaled constructions, power plants, reac-

tor vessels or pipelines. In former times, thick section weld-

∗author to whom any correspondence should be addressed
Email address: Marcel.Bachmann@BAM.de (Marcel Bachmann)

ing of metal parts was a classical application for the electron

beam (EB) welding technology [1]. Electron beam sources of

more than 100 kW power were developed and used in the in-

dustrial production chain. The improvement of the laser beam

(LB) sources over the years made the laser beam welding to

an attractive alternative due to its efficiency, flexibility and the

possibility to weld under atmospheric conditions.

Due to the development of the metal vapour plasma, the clas-

sical CO2 laser with a wavelength of 10.6 µm is applicable for
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welded layers of up to 20 mm thickness [2]. A further increase

of laser power does not lead to an increase in laser penetration

depth. Modern disc and fibre laser deliver output powers of up

to 100 kW (cw) with a wavelength of around 1 µm [3]. Those

types of lasers allow for the welding of thicknesses of more than

20 mm per welded layer [4]. A further advantage of the laser

beam welding technology in contrast to EB welding is that elec-

tromagnetic methods can be exploited to improve the welding

process and the weld quality [4, 5].

A common issue when joining large structures are the weld-

ing distortions depending on the heat input during the process-

ing. When the distortions are larger than the tolerable toler-

ances, time-consuming and expensive steps of mechanical post-

treatment can become necessary. This is especially important

for classical arc welding applications but also for multi-layer

welding with high accumulated energy input. The bending and

angular distortions can be limited by a homogeneous solidifi-

cation of the weld bead when the side walls of the molten pool

are nearly parallel. Thus, the shrinkage associated to the cool-

ing after the welding procedure mainly causes longitudinal and

transversal stresses instead.

Characteristically associated to the welding of aluminium

alloys is the very high heat conductivity in their liquid state.

Thus, the weld beads are very large especially near the surfaces.

There, the thermocapillary (Marangoni) convection [7] is the

dominating driving mechanism leading to a typical wineglass-

shape of the weld cross sections. The strong curvature of the

weld bead causes inhomogeneous solidification fronts and pro-

motes bending and buckling distortions after cooling down. For

the welding with high laser powers, this is especially important

in deep penetration welding.

Another issue when welding thick structures is the devel-

opment of spattering and blow-outs of liquid metal which are

caused by very high local melt velocities [8, 9]. When the sur-

face tension cannot hold the melt, welding defects, e.g. a lack

of fusion can occur. This can be avoided by a reduction of the

influence of the melt dynamics. Hence, this paper deals with

the electromagnetic deceleration of the melt during laser weld-
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Figure 1: Influence of the applied magnetic field on the weld pool geometry.

ing processes and its influence on the resulting solidification

behaviour (see Fig. 1) which is called Hartmann effect.

It is well-known that applied constant or oscillating mag-

netic fields can effectively decelerate the fluid flow in metal

melts [10] and reduce the convective heat transfer consequently

[11, 12]. The movement of an electrically conducting medium

perpendicular to an applied magnetic field B induces an electric

current density:

ju ∼ σu × B, (1)

where σ and u are the electric conductivity and the melt ve-

locity, respectively. The interaction of the resulting electric

currents with the externally applied magnetic field leads to a

Lorentz force distribution being partially directed against the

melt velocity. Hence, the corresponding Lorentz force acts like

an additional viscous force that dampens the flow velocities.

The electromagnetic contribution to the dynamic viscosity of

the melt is:

ηEM = σB2L2, (2)

with the weld bead half width L. A measure for the relative

importance of magnetically induced drag and viscous forces is

the Hartmann number [13]:

Ha2 =
ηEM

η
=
σB2L2

η
. (3)

To clarify the relative influence of the induced braking forces on

the resulting flow field, their ratio to the flow inertia is decisive.

This relation is described by the interaction parameter [13]:

N =
Ha2

Re
=
σB2L
ρU

(4)
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Figure 2: Influence of an applied steady magnetic field of 0.25 T on the flow

field.

with Re being the Reynolds number and U the velocity magni-

tude. An estimation of the interaction parameter can be seen in

Fig. 2.

It shows, that the effect of an applied magnetic field is larger

for wider weld beads as well as for smaller melt velocities,

where the flow inertia is lower.

In many industrial processes like continuous casting or crys-

tal growth, steady, travelling and oscillatory magnetic fields are

widely used to achieve widespread goals, e.g. a grain refine-

ment, surface stabilization or a flow deceleration in electrically

conducting liquids. Reviews on the use of magnetohydrody-

namics in materials processing are given in [14, 15]. Espe-

cially the Hartmann effect was also used in crystal growth [16],

surface alloying [17] and continuous casting [18] reporting a

distinct flow deceleration and a reduction of turbulence levels.

Welding-related examples of the application of Lorentz forces

in the weld bead are given in [19].

First experimental results of an investigation of the Hartmann

effect due to stationary magnetic fields in CO2 laser beam weld-

ing were presented in [20]. The half width of the weld bead

was around 1 mm and the magnetic flux density was 40 mT

leading to Hartmann numbers Ha2 around 100. A smoothing

of the weld seam and humping prevention was observed in de-

pendence of the polarity of the applied DC fields, which was

related to thermoelectric currents between material of different

temperatures. These currents were independent of the direction

of the applied magnetic fields. In a later publication [21], the

observed phenomena were explained by an interaction of the

CO2 laser plasma with the welded specimen and related to the

wavelength of the laser radiation. A more recent work reports

on thermoelectric currents during laser beam welding includ-

ing sheath effects as well as a potential drop within the laser-

induced plasma [22]. In conclusion, the scientific importance

of the investigation presented in this paper is based on the iso-

lated evaluation of the Hartmann effect. Hence, a disc laser was

used for the experimental part in this paper with a ten times

shorter wavelength compared to the used CO2 laser in [20].

2. Setup

In this investigation, two configurations were investigated

numerically, see Figure 3. The first refers to the laboratory scale

with optimal conditions for the Hartmann effect, namely a wide

weld bead as well as the magnetic field being concentrated in

the weld pool (Fig. 3(a)). Hereafter, this setup is referred to as

configuration A. The second configuration is devoted to inves-

tigate the influence of the Hartmann effect in a more common

welding application: the weld seam is smaller and the magnet

poles of the DC electromagnet are mounted above the work-

piece (Fig. 3(b)). This setup is referred to as configuration B.

The welding experiments were conducted in the configura-

tion seen in Fig. 3(a).

2.1. Numerical setup

The numerical simulations were conducted with the commer-

cial finite element solver COMSOL Multiphysics. As the in-

volved physics affect each other and additionally are affected

by the temperature-depending material properties (see Fig. 4),

a segregated solver was used to solve the energy equation,

Navier-Stokes equations with a standard k−ε turbulence model,

and Maxwell equations iteratively. The setup shown in Fig. 3(a)

was calculated using a mesh with around 900 000 elements,

whereas the setup in Fig. 3(b) needed 265 000 mesh elements.

Using linear elements types for the temperature as well as the

3
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Figure 3: Setup of the investigated configuration. (a) Permanent magnets mounted on the workpiece. (b) DC electromagnet above the welded specimen.
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Figure 4: Numerical coupling of heat transport, fluid dynamics and electrody-

namics in a welding process simulation.

fluid flow and quadratic shape functions for the electromag-

netic part, the total amount of degrees of freedom was around

8 100 000 and 600 000, respectively. The results were checked

for insensitivity of the used meshs and the required relative tol-

erance in each of the segregated substeps to achieve conver-

gence was 0.001.

The setup details for the two cases investigated (Fig. 3) are

summarized in Tab. 1.

The assumptions for the calculations, the material model as

Table 1: Details for the used setup in the simulations.

configuration A – Fig.3(a) B – Fig.3(b)

material aluminium

material thickness in mm 50 6

welding velocity in m/min 0.5 2

penetration depth keyhole in mm 21 4

magnet pole cross section 50 mm × 50 mm 20 mm × 20 mm

pole distance 40 mm 20 mm

distance pole workpiece 30 mm overlap 2 mm

well as the governing equations with the corresponding bound-

ary conditions are justified in detail in [12]. Therefore, they are

listed here only briefly:

• Mass conservation

∇ · (ρu) = 0 (5)

with the mass density ρ and the fluid velocity u = (u, v,w).

• Momentum conservation

ρ (u · ∇) u = ∇ ·
[
−pI + (η + ηT )

(
∇u + (∇u)T

)
−2

3
(η + ηT ) (∇ · u) I − 2

3
ρkI
]
+ F

(6)

with the pressure p, turbulent viscosity ηT and the source

term F.

F = ρgβ (T − Tmelt) − c1
(1 − fL)2

f 3
L + c2

(u − uweld)

+ j × B

(7)

with the first term on the right-hand side (RHS) being the

buoyancy term with the gravitational constant g and the

coefficient of thermal expansion β. The second term on the

RHS decelerates the flow in the solid region to the welding

velocity (Carman-Kozeny equation [23]). There, fL is the

liquid fraction and c1 and c2 are chosen constants. The

third term on the RHS refers to the Lorentz force with the

electric current density j and the magnetic flux density B.
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Table 2: Material properties of pure aluminium at melting temperature Tmelt

[24, 25].

Material property Value Unit

Melting temperature Tmelt 933 K

Evaporation temperature Tevap 2700 K

Mass density ρ 2380 kg m−3

Heat capacity Cp 1180 J kg−1 K−1

Latent heat of fusion Hf 3.97 × 105 J kg−1

Heat conductivity λ 91 W m−1 K−1

Dynamic viscosity η 1.1 × 10−3 Pa s

Surface tension γ 0.871 N m−1

Marangoni coefficient ∂γ/∂T −1.55 × 10−4 N m−1 K−1

Electrical resistivity ρel = σ
−1 24.77 × 10−8 Ωm

Further equations of the standard k − ε turbulence model

are solved for the calculation of the turbulent viscosity

ηT ∝ k2

ε
(8)

with the turbulent kinetic energy k and the turbulent dissi-

pation rate ε.

• Energy conservation

ρCpu · ∇T = ∇ · (λ∇T ) (9)

Here, Cp,T , and λ are heat capacity, temperature and heat

conductivity. An effective formulation for the heat capac-

ity was used to account for the latent heat of melting and

solidification.

• Electromagnetic equations

∇ × B = µ0j, (10)

∇ × E = 0. (11)

with the magnetic permeability in vacuum µ0 and the elec-

tric field E. The movement of conducting particles in

the magnetic field induces a current density according to

Ohm’s law without further external sources.

j = σ (E + u × B) . (12)

The boundary conditions are explained in detail in [12]. The

most important assumptions are listed below:

• Half-symmetry was exploited.

• Temperature-dependent material model (see Tab. 2). As

temperature-dependent material properties for AlMg3, es-

pecially in the liquid state are hardly documented in the

literature, the values for available pure aluminium were

chosen. For low-alloyed Al, the thermophysical properties

are comparable in the liquid state. The values of the solid

material may differ slightly, but as the processes happen-

ing inside the weld pool are of major interest, this was ne-

glected. Even larger differences occur for the solid state

electric conductivity (a factor of around 2), but Ohmic

losses in the specimen were not regarded in this study.

• Fixed geometry and keyhole surfaces. Hence, it is as-

sumed that the welding conditions as well as the dynamics

inside the molten pool allow for a stable process.

• Keyhole temperature set to evaporation temperature.

• No flow normal to the keyhole wall.

• Non-viscous flow along the keyhole wall and surface.

• Marangoni flow at the upper surface.

η
∂u
∂z

=
∂γ

∂T
∂T
∂x
, (13)

η
∂v
∂z

=
∂γ

∂T
∂T
∂y
. (14)

with the surface tension γ.

• The magnetic flux densities referred to in the results sec-

tion are the constant values at the magnet edge (configura-

tion A) and the average value in the magnet pole centreline

(configuration B), see also Fig. 3.

The chosen boundary conditions at the keyhole walls imply,

that the recoil pressure was ideally balanced by surface ten-

sion forces. As the article mainly focuses on the interaction

of electromagnetic fields with fluid dynamic effects, an ele-

mentary model of the laser beam welding process was imple-

mented. In this configuration, the keyhole is subjected to free

slip conditions and its geometry is much smaller than the weld
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pool. Therefore, the influence of the keyhole shape on the flow

field is negligible. Nevertheless, the heat input and the result-

ing weld pool dimensions depend on the keyhole radii, which

are a kind of free model parameter to fit the experimental ob-

servations in terms of the weld pool dimensions by applying

evaporation temperature at the keyhole wall.

2.2. Experimental setup

The experiments were conducted in the setup seen in

Fig. 3(a). Two NdFeB permanent magnets were mounted

on both sides of the workpiece with a water-cooled ferritic

plate in between to avoid overheating and subsequent de-

magnetization. The most important welding parameters for the

experiments are summarized in Tab. 3.

Table 3: Details for the used setup in the welding experiments.

geometric setup as shown in Fig. 3(a)

material AlMg3

laser source Trumpf TruDisk 16 002

wavelength 1030 nm

fibre diameter 200 µm

focus length 300 mm

laser incident angle 18◦

laser power 16 kW

focus position -4 mm

welding velocity 0.5 m/min - 1 m/min

shielding gas Ar

focus diameter 300 µm

magnetic flux density 500 mT

3. Results

3.1. Numerical results

3.1.1. Electric current density distribution

The electric current density distribution in the workpiece and

the weld pool depends on the local quantities of the electric

conductivity, the flow velocity and the strength of the magnetic

field. Outside the weld pool, the electric current density in the

simulations is a consequence of the constant velocity difference

between the workpiece and the magnets, which is the weld-

ing speed, see Fig. 5(a). This is due to the Euler approach,

x 104

0 521 3 4

electric current density j in A/m2

5
0
 m

m

welding direction
weld pool

welding direction
weld pool

x 104

0 20.80.4 1.2 1.6

electric current density j in A/m2

(a) magnet moved in line with laser beam (b) magnet stationary

Figure 5: Exemplary electric current density in the workpiece due to the pres-

ence of a moving electrically conducting medium and a transverse stationary

magnetic field for B = 0.5 T.
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Figure 6: Exemplary electric current density in the weld bead due to the pres-

ence of a moving electrically conducting medium and a transverse stationary

magnetic field for B = 0.5 T.

which is usual in computational fluid dynamics. In the exper-

iments, the used permanent magnets were mounted stationary

at the sides of the workpiece. Consequently, the velocity differ-

ence between the magnets and the solid material are vanishing,

which causes a qualitative change of the behaviour of the elec-

tric current densities in the whole workpiece. The differences

in the electric current density distributions between both cases

with the magnets moved in line with the laser beam and the

magnets being mounted stationary at the workpiece are shown

in Fig. 5.

Nevertheless, Fig. 6 shows, that the electric current density

remains nearly the same inside the weld pool. The reason is,

that the flow velocities, which are essential for the development

of the electric currents, are up to two orders of magnitude larger

than the welding speed. Therefore, the differences of the result-

ing Lorentz forces are negligible and the results of the com-

puter simulations with magnets moving in line with the laser
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Figure 7: Isotherms in the symmetry plane of the weld pool for three cases

of partial penetration welding of aluminium with a laser penetration depth of

around 21 mm: magnet off, B = 0.5 T, and B = 1.0 T.

are comparable to the conducted experiments with locally fix-

ated permanent magnets.

3.1.2. Configuration A

Selected temperature isolines as well as the flow streamlines

of the simulations of partial penetration welding of aluminium

without and with applied magnetic flux densities of 0.5 T and

1 T are shown in Fig. 7 and Fig. 8. The Marangoni flow causes

a flow in the surface-near region, that is directed radially out-

ward from the keyhole to the outer weld pool boundary. Below

the surface, the flow direction is opposite due to the law of mass

continuity. Thus, the flow reversal affects the geometry of the

weld bead and gives it a wineglass-like shape in both the lon-

gitudinal as well as the transversal cross sections with a strong

curvature of the solidification isotherm especially in the weld

pool rear. This behaviour was observed in different welding

simulations and for different materials [26, 27]. The natural

convection supports that effect by an upwelling flow near the

keyhole. The lower part of the weld pool is mainly character-

ized by a horizontal flow around the keyhole.

Applying a steady magnetic field transverse to the welding

direction mitigates the influence of the Marangoni flow on the

weld pool dynamics. The flow velocities in the upper part of the

weld pool are smaller and the region of the Marangoni vortex

is moved towards the weld pool surface. The magnetic braking

due to the Hartmann effect evokes a more two-dimensional flow

field in wide parts of the weld pool, see Fig. 9 which in the

end produces a less curved solidification isotherm. Significant

B = 0 B = 0.2 T B = 0.5 T

B = 1.0 T B = 2.0 T

0.
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08
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Figure 8: Flow streamlines coloured with the velocity magnitude. Velocity

values above 0.1 m/s are coloured in red.

Marangoni flow area

flow around keyhole area

welding direction

B = 0
B

Figure 9: Flow scheme in the weld pool without (left) and with applied mag-

netic field (right).

changes in the flow field are visible already for magnetic flux

densities around 0.5 T. A further increase of the magnetic flux

density changes only the weld pool dimensions but not the flow

characteristics in the weld pool.

The weld pool width to length ratio for increasing magnetic

flux densities is shown in Fig. 10. A clear tendency to shorter

and narrower weld pool dimensions was observed for larger ap-

plied magnetic fields which is due to the mitigated dynamics

and thus less influence of the convective motions in the melt.

The corresponding ratio of weld pool width to length also re-

duces. The values obtained by a coupled simulation for differ-

ent magnetic flux densities are compared to a theoretical case,

where only convective heat transport is assumed by the welding

speed uweld in the whole domain and local velocity variations

are neglected. This can be seen as a state of ideal flow deceler-

ation that will not be reached in real experiments, and its ratio
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Figure 10: Weld pool width to length ratio for increasing magnetic flux density

compared to a theoretical case, assuming only heat conduction with welding

speed in the whole calculation domain.

value is the limiting value for the investigated case. The weld

pool dimensions for that case were found by the solution of the

heat conduction equation with constant convective term.

The braking of the flow velocities is also associated to a de-

crease in the turbulence levels reached and thus also in the tur-

bulent viscosity, see Fig.11. In the reference case without ap-

plied magnetic fields, the turbulent viscosity is especially high

in the regions of the recirculation of the flow in the upper part

of the weld pool. For a magnetic flux density of 0.5 T, its values

have dropped significantly, although the highest values in this

case are still observable being considerable above the values of

the molecular viscosity.

turbulent viscosity / molecular viscosity

x in mmx in mm

z
 i
n
 m

m

z
 i
n
 m

m
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Figure 11: Ratio of the turbulent viscosity and the molecular viscosity in the

weld pool for the reference case (B = 0) and for B = 0.5 T.
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Figure 12: Left: Interaction parameter in the weld symmetry section for a mag-

netic flux density of 0.5 T based on an approximate weld pool half width of

8 mm. Right: Distribution of the interaction parameter at the weld surface for

increasing magnetic flux density.

The interaction parameter for the case B = 0.5 T and its dis-

tribution at discrete locations on the surface behind the keyhole

for increasing magnetic flux densities are shown in Fig. 12. Due

to the high velocities near the surface, the values of N are much

smaller there compared to the area in the depth of the weld pool.

Along the weld surface, the interaction number is single-digit

and even below unity in some places. The highest flow veloc-

ities occur around 3 mm behind the keyhole, where the inter-

action number is smallest. Correspondingly, the influence of

the induced braking forces is minor there. Nevertheless, the in-

fluence of the induced Lorentz forces is large enough to have

enough impact on the global flow field to have an effect on the

weld pool geometry.

3.1.3. Configuration B

The comparison between configurations A and B in Fig. 13

in terms of the normalized magnetic flux density shows, that

the magnetic field in the weld pool in configuration B is smaller

con guration A con guration B

Figure 13: Normalized magnetic flux densities for configuration A and B in %

of the applied field strength, see Fig. 3
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Figure 14: Isotherms in the symmetry plane of the weld pool for three cases of partial penetration welding of aluminium with a laser penetration depth of around

4 mm: magnet off, B = 1 T, and B = 2 T.

than the boundary reference value (around 65 %) and also less

homogeneous in depth compared to configuration A, where the

magnetic flux density is nearly constant. One could imagine

configuration A being the laboratory case with permanent mag-

nets mounted directly to the welded plates, and configuration

B the one that works with a movable electromagnetic system

being mounted above the workpiece.

The simulation results for partial penetration welding in

6 mm thick aluminium with a keyhole penetration of 4 mm

can be seen in Fig. 14 and Fig. 15. The magnetic flux den-

sity values refer to the applied boundary condition value. The

results obtained for the temperature as well as for the velocities

in the weld pool are qualitatively comparable to that for con-

figuration A. The flow characteristics is still dominated by the

strong influence of the Marangoni flow. Increasing the mag-

netic flux density also leads to a shortening of the weld pool

dimensions and a flow that is less disturbed by turbulence and

vortices, especially in the lower part of the weld pool where the

flow velocities are smaller than near the surface. A comparison

of the flow fields in sections 3.1.2 and 3.1.3 shows, that higher

values of the magnetic field are needed for smaller weld beads

to obtain a similar influence on the velocities and solidification

isotherms (cf. eq. (4)). A consequence of the Hartmann effect

is the disappearance of the pronounced curvature of the weld

pool rear shape as well as a deceleration of the flow velocities

in wide areas of the molten zone.

In analogy to configuration A, the simulation results in the

symmetry plane as well as on the surface for the interaction pa-

rameter N describing the quantitative influence of the braking
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Figure 15: Flow streamlines coloured with the velocity magnitude. Velocity

values above 0.1 m/s are coloured in red.
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netic flux density of 1.0 T based on an approximate weld pool half width of

3.2 mm. Right: Distribution of the interaction parameter at the weld surface for

increasing magnetic flux density.
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Lorentz forces on the flow field are shown in Fig. 16 for config-

uration B. Again, the highest values of N are reached below the

circulation zone due to the Marangoni vortex, where the flow

velocities are moderate and thus the ratio of electromagnetic

braking to viscous effects is high. Decisive for the flow control

especially near the surface is the region of the Marangoni vor-

tex, see the right diagram in Fig. 16. It reveals that beginning

with a magnetic flux density of approximately 1 T, the inter-

action parameter rises to values significantly larger than one.

Hence, a clear mitigating effect on the flow velocities is ex-

pectable, which is backed by the results obtained in Fig. 14.

Compared to configuration A, the weld bead shortening due

to the Hartmann effect is smaller for configuration B, which can

be explained by the higher welding speed and thus a relatively

higher convective heat transport influence in reverse processing

direction there.

3.2. Experimental results

As the experimental setup was the same in an earlier publica-

tion, the distribution of the magnetic flux density in the symme-

try plane measured by a Hall sensor before welding shown in

Fig. 17 was taken from [12]. It shows, that the maximum value

is around 0.5 T. Furthermore, the magnetic flux density can be

seen as constant for the weld pool taking into account that the

typical weld pool dimensions of the previous sections are small

compared to the dimensions of the permanent magnet.

The weld surface as well as macrographs at different po-

sitions in front of, inside and behind the mounted permanent
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Figure 17: Distribution of the magnetic flux density in the symmetry plane.

(a) uweld = 0.5 m/min

(b) uweld = 1 m/min

Figure 18: Experimental results for different welding speeds.

magnets can be seen in Fig. 18 for two different welding speeds

made with the aluminium alloy AlMg3. The test parameters are

summarized in Tab. 3. In Fig. 18(a), the weld penetration depth

is around 25 mm. Strong Marangoni convection at the free sur-

face causes a significant curvature of the solidification isotherm

in the macrographs outside the magnetic field. The weld sur-

face is very wavy and irregular due to the dynamics inside the

weld pool. Consequently, the weld cross sections show a nail-

head geometry in the case without applied magnetic field. The

cross sections with magnetic field applied show a V profile that

points to a flow deceleration under the influence of the Lorentz

forces and thus lower flow dynamics inside. Additionally, the

weld surface quality is smoother compared to the reference case

without magnetic field.

The welding tests were repeated with a welding speed of

1 m/min, see Fig. 18(b). As solidification time becomes smaller

with increasing the welding speed, the experimental results in

10



Fig. 18(b) suffer to a larger extent from porosity, whose reduc-

tion was not the goal of the present investigation. It shows, that

the trends to a smoother weld surface and more parallel side

walls in the cross sections remain the same under the influence

of an applied magnetic field. Nevertheless, the influence of the

induced electromagnetic forces is much less pronounced here as

the characteristic length of the weld pool is smaller when com-

pared to the lower welding speed. That observation fits very

well to the numerical results in sections 3.1.2 and 3.1.3.

A comparison between the numerically obtained weld cross

sections (section 3.1.2) and those from welding experiments

(18(a)) is shown in Fig. 19. Compared are two cases: the ref-

erence case without applied magnetic field and the case corre-

sponding to the experimental magnetic flux density of 500 mT.

The results are in good accordance in terms of qualitatively re-

producing the solidification line as well as the tendency in ge-

ometry change between the reference case and the case with

applied magnetic field.

Further experiments, with the welding direction turned,

showed that the direction of polarisation of the magnetic field

is insignificant for the welding results, according to the theory

of the Hartmann effect, as long as it is aligned vertical to the

welding direction.

10 mm simulation

B = 0 B = 0.5 T

Figure 19: Comparison between experimentally (Fig. 18(a)) and numerically

obtained weld cross sections (section 3.1.2).

4. Summary & conclusions

The present investigation deals with the numerical assess-

ment and experimental verification of the interaction of an

externally applied steady magnetic field perpendicular to the

welding direction with the weld pool dynamics in thick section

partial penetration laser beam welding of aluminium with a thin

disc laser.

The presented numerical results show a clear influence of the

induced electromagnetic forces on the flow velocities and the

weld pool shape. The changes in the convection in the melt

cause a shortening and also a narrowing of the weld bead. Ex-

perimentally, a positive influence of the reduced weld pool dy-

namics on the weld bead shape and the weld surface was also

visible.

It was shown that the investigated effect is primary based on

an effective braking of the local flow velocities due to the nature

of the generation of the flow-dependent induced electric current

density. Hereby associated to the liquid metal flow deceleration

is a mitigation of the turbulence levels in the weld pool, which

was numerically quantified by the turbulent viscosity values.

According to the definition of the Hartmann number Ha2, it

was affirmed, that the Hartmann effect works more efficiently

for larger weld bead dimensions, which usually restricted its

use to processes of larger scale, e.g. crystal growth and casting

applications. Referred to deep penetration welding, an influ-

ence of the induced Lorentz forces was remarkable, when the

Hartmann number in the area of the Marangoni vortex exceeded

the flow inertia associated to interaction numers being larger

than unity. Subsequently, common industrial welding applica-

tions aside from shipyards or heavy industry with correspond-

ing smaller weld pool dimensions and a magnet that would be

mounted above the weld pool would require an equivalently

larger magnetic field.

It can be concluded, that the reduced influence of the

Marangoni convection on the curvature of the solidified weld

bead is favourable in terms of a homogeneous mechanical stress

distribution in the weld specimen thus being able to decrease

the susceptibility level against welding-induced distortions.
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