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Abstract: The strain field can reflect the initiation time of solidification cracks during the welding
process. The traditional strain measurement is to first obtain the displacement field through digital
image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage
is that the calculation takes a long time, limiting its suitability to real-time applications. Recently,
convolutional neural networks (CNNs) have made impressive achievements in computer vision.
To build a good prediction model, the network structure and dataset are two key factors. In this
paper, we first create the training and test sets containing welding cracks using the controlled tensile
weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then,
two new networks using ResNet and DenseNet as encoders are developed for strain prediction,
called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two
networks on our test set is about 0.04, close to the real strain value. The computation time could be
reduced to the millisecond level, which would greatly improve efficiency.

Keywords: convolutional neural network; strain fields prediction; laser beam welding; solidification
cracking

1. Introduction

Together with metallurgical factors, the formation of hot cracks during welding is
mainly induced by the thermomechanical effect, which characterizes the strain-stress
behavior of a material as a function of the temperature. The influence of the structure
of the welded component and the stress intensity are also significant drivers of the hot
cracking process. A variety of theories consider strain as an essential criterion for hot
cracking. According to Pellini [1,2], hot crack initiation is based on strain localisation in
the intercrystalline melt film. The tensile strains resulting from the welding process are
transferred from the fully solidified region and the dendrites in the solidification region
into the interdendritic melt films and accumulate there. Crack initiation occurs close to
the solidus temperature as the grain boundaries are covered with thin melt films at this
stage, and even small strains are sufficient for crack initiation. Prokohrov [3,4] defines the
’brittle temperature range (BTR)’. Within this temperature range, the weld metal reaches
its minimum ductility during solidification. If the resulting strain exceeds the ductility
of the crystallising melt, hot cracking occurs. Based on this basic idea, various authors
have experimentally determined the maximum sustainable strain of this temperature range.
Although the BTR concept only considers the mechanical component of hot cracking, it is
particularly suitable for comparing different materials with regard to their susceptibility to
hot cracking.

The experimental measurement of strain in the high-temperature range relevant for
solidification cracking is usually difficult with the common measuring techniques, such as
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inductive displacement transducers or strain gauges. Besides the widely used strain gauge
measurement method, modern optical technologies are increasingly used for non-contact
measurements. Optical methods such as digital image correlation (DIC) do not require
mechanical contact for taking measurements, so it is easy to obtain displacement data
from the visible range of a digital camera. Unlike the use of strain gauges, these methods
therefore have no influence on the processes being measured.

De Strycker et al. [5] were the first to use this technique to measure welding defor-
mations. The strains estimated from the DIC technique were also compared with those
obtained from the strain gauge (SG) technique, and the results showed good agreement.
Using a digital camera and the normalized correlation algorithm, Shibabhara et al. [6,7]
developed a two-dimensional (in-plane) technique to measure in-situ full-welding deforma-
tions. The further development of the measurement technique was reported in [8], where
two digital cameras and the stereo imaging technique were used to match the images.
Chen et al. [9,10] employed a similar setup to measure the strain during the gas tungsten
arc welding (GTAW) process. Gollnow et al. [11] also utilized the DIC technique and the
controlled tensile weldabilty test (CTW test) to analyze the weld pool near transverse
displacements and the influence of this displacement on solidification crack formation.
Gao et al. [12] used the free edge test to investigate the hot cracking susceptibility of TRIP
steels; in that study, the DIC technique was also utilized to estimate the strain threshold
required for hot crack formation. In their investigations, two 30 W LEDs with a wavelength
of 450 nm were employed as an illumination source. A similar configuration was also used
by Hagenlocher et al. [13] to determine the critical strain and strain rate threshold required
for hot crack formation during the laser welding of aluminum alloys.

The optical flow technique has been used to estimate the motion of pixels in an image
sequences [14]. Primarily, this technique is employed to estimate the object velocity and
the position of the object in the next image. Moreover, it has found an important utilization
in the field of experimental mechanics. [15,16]. The displacement field resulting from the
application of optical flow has a subpixel resolution, usually with values less than 1 pixel.
Gong and Bansmer [17] used the optical flow technique and image correlation to measure
the deformation of a birdlike airfoil. The results show higher spatial resolution compared
to the image correlation technique.

The DIC-based method can measure accurate displacement, but it is expensive and
time-consuming. By integrating a digital camera into a laser head to film the moment of
crack formation during laser beam welding for austenitic stainless steels and based on the
optical flow technique, Bakir et al. [18,19] developed a 2-dimensional (2D) measurement
technique that provides, for the first time, a local analysis of the strain field in the immediate
vicinity of the solidification front.

Convolutional neural networks (CNN) [20] are one of the famous deep learning
algorithms. They have achieved great success in per-pixel prediction problems due to
their learning ability and high efficiency, supported by semantic segmentation, depth
estimation, optical flow estimation, etc. Strain prediction can be regarded as a similar
problem, especially when aiming at optical flow estimation, which learns correspondences
between images. A milestone network FlowNet [21] first achieved the optical flow estimation
based on deep learning. It adopts a generic U-Net architecture. The accuracy of FlowNet
is still lower than traditional variational methods, so following FlowNet, many extensions
have been developed to reduce the number of parameters and improve accuracy. In 2016,
FlowNet2 [22] was proposed by stacking multiple subnetworks. The accuracy could be
significantly improved at the cost of increased number of parameters and longer run time.
SPyNet [23] incorporates the coarse-to-fine idea of the variational methods; it up-samples
the learned flow and warps it on the second image to refine the flow. The model size
is reduced, but the accuracy cannot compete with FlowNet2. The small and efficient
network PWC-Net [24] is 17 times smaller than Flownet2 while maintaining high accuracy
on several standard datasets; it leverages some simple but well-established principles from
classical approaches, such as pyramidal processing, warping, and cost volume. Another
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concurrent work, LiteFlowNet [25], also adopts feature warping and proposes a novel flow
regularization module. Subsequently, an increasing number of ideas emerged in optical
flow estimation; IRR [26] adopts iterative optimization flow and weight sharing . HD3 [27]
introduces matching density estimation. VCN [28] improves the cost volume to 4D tensor.
MaskFlownet [29] solves the occlusion problem. In 2020, a completely different network
RAFT [30] was proposed. It removes the spatial pyramid structure and consists of three
main components: a feature encoder, a correlation layer, and a recurrent update operator.
This model has become a new milestone and is followed by many works [31–34].

Due to the success of deep learning in optical flow estimation, some CNN based
methods can now retrieve displacement and strain fields as traditional DIC. They overcome
its disadvantages, such as long computation time. Ref. [35] compares two image crack
segmentation methods: the first applies a threshold on the strain map derived from the
DIC, and the other uses a deep convolutional neural network. Boukhtache et al. [36]
develops a network named StrainNet by modifying the number of down-samplings of
FlowNet. It can obtain the full-resolution displacement and strain fields from reference and
deformed speckle images. Yang et al. [37] proposed a deep learning method, Deep DIC,
which includes two models, DisplacementNet and StrainNet, for displacement and strain
prediction. The two models are slightly different in depth and up-sampling operation.
The prediction results are highly consistent with commercial DIC software. In [38], a
Hermite dataset is created to simulate deformation. Then, a new network DIC-Net on
this dataset is trained that can successfully predict the strain field. [39] applies the image-
segmentation technique DeepLabv3+ to achieve the pixel level classification of DIC strain
field images, thus realizing damage detection in carbon-fiber-reinforced plastic (CFRP).

However, the above investigations have not been applied in laser beam welding. In this
paper, we first collect a real welding dataset for training a good model. The controlled tensile
weldability (CTW) test is a technique to crack the specimen through the external load; it is
used to simulate the occurrence of cracks during the data generation. Then, the strain fields
are calculated through a strain calculation method applying the OpenCV library [18,19].
The mechanisms of cracking during laser beam welding have been investigated in previous
studies using the mentioned test and the strain measurement method based on an optical
flow algorithm [18,40]. On the other hand, these existing models contain a large number
of parameters, reaching up to tens of millions, which occupy a lot of memory. Moreover,
there is the risk of overfitting our welding dataset. Two end-to-end models based on
the U-Net [41] structure are developed. They adopt ResNet [42] and DenseNet [43] as
the backbone for feature extraction and are named StrainNetR and StrainNetD. Finally,
the performances of the two models are systematically analyzed; the results show that they
achieve near-real-time strain prediction with a low error during the welding process, and
the location of the identified cracks matches the real data.

The contributions of this paper are as follows:

• A video of strained welding using CTW was generated;
• Two deep neural networks called StrainNetR and StrainNetD for strain prediction

were proposed;
• The two models were trained and evaluated on the real generated dataset.

2. Methods

In this section, the methodology to generate a realistic welding dataset and the corre-
sponding strain fields is introduced first. Then, the design of two strain prediction models
is described.

2.1. Data Collection

The overall method of dataset generation includes three steps: conducting welding
experiments, collecting images from the camera, and calculating the strain fields. The details
are described as follows.
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2.1.1. Welding under External Strain

The welding experiments were carried out with the Trudisk 16,002 disk laser from
Trumpf, with a maximum output power of 16 kW, a wavelength of 1030 nm, and a beam
parameter product of 8 mm x mrad. The welding experiments were carried out on sheets
of austenitic steel grade 1.4404 (AISI 316 L) with a thickness of 2 mm. The chemical
composition of the material, determined using the spectral analysis, is summarized in the
Table 1. The welding parameters applied were 2 kW laser power and a constant welding
speed of 1.2 m/min, at a focus position of +5 mm . Argon with a flow rate of 20 l/min was
used as shielding gas. In these experiments, all welds were bead-on-plate welds and the
seam length was 100 mm.

Table 1. Chemical composition (in wt-%) of the investigated material.

C Cr Ni Mn Mo Si P S N Fe

0.03 16.95 10.57 1.36 2.28 0.39 0.04 0.004 0.019 Bal.

The solidification cracks were generated during laser beam welding using the hot
cracking test under external loading. This type of hot cracking test or so-called externally
loaded hot cracking test was developed to induce cracking in the specimen by external
load. The controlled tensile weldability test was used in these experiments, where the weld
specimen was subjected to a predefined strain and strain rate perpendicular to the welding
direction while welding (see Figure 1). The strain was not controlled during the welding
process; only a predefined transverse displacement corresponding to the targeted strain
was applied.

Figure 1. The experimental setup of the welding under external strain using CTW test.

The welded specimens were subjected during welding to a strain of 7% at three
different strain rates 4 s −1, 6 s−1 and 8 s−1. The strain was applied after 30 mm after
the start of welding with the corresponding (strain rates). Afterwards, the applied strain
was kept until the end of welding. Figure 2 shows, schematically, the CTW test procedure
during the welding process.
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Figure 2. Schematic representation of the CTW test procedure during laser beam welding.

2.1.2. Data Acquisition

The video recording of the laser beam welding was performed with the PCO edge
5.5 camera, which has a sCMOS sensor Figure 1. The images were captured using a
combination of external laser illumination and appropriate filters. A diode laser (compact
diode laser) from Dilas with a wavelength of 808 nm and a maximum power of 100 W was
used as the illumination source. The laser beam was guided by a fiber from the laser device
to a collimator and finally projected by a beam expander on the sample surface. The selected
interference filters have a mean wavelength of 808 nm and a bandwidth of 20 nm, ensuring
that the optical filters will only pass the illumination wavelength and process emissions
that have a wavelength of 808 nm. The process emissions that are not in the range of the
illumination wavelength are suppressed. This enables a reliable recording with speckle
pattern, which is helpful for strain estimation (see Figure 3). The recording rate used was
1176 fps. The images were stored in tif format with a resolution of 480 × 180 pixels.

Figure 3. Image was taken during welding and shows the formation of a solidification crack.

Table 2 summarizes the prepared and used dataset and the data volumes. There are
six videos, and each video contains around 5000 image sequences; four videos are called
TD (training data), and two are called T (test). The training data amounts to 20,000 images.
They are divided into a training set (80%) and a validation set (20%). The validation set is
used to adjust the network structure and parameters. The test set consists of two different
image sequences to evaluate the performance of the models.
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Table 2. Details of train/validation set (TD1–TD4) and test set (T1 and T2).

Train/Validation Set CTW Strain in % CTW Strain Rate in s−1 Data Quantity (Images)

TD1 7 4 5030
TD2 7 4 5080
TD3 7 6 5000
TD4 7 6 5000

Test Set CTW Strain in % CTW Strain Rate in s−1 Data Quantity (Images)

T1 7 8 5260
T2 7 8 4300

2.1.3. Strain Estimation

The strain estimation for solidified material is based on the work of Bakir et al. [18,19].
It uses the Lucas–Kanade algorithm [44] for optical flow. The pixels of the new solidified
material (behind the melt pool) is included in the calculation, and it will be considered as
long as the pixels are within the ROI (region of interest). After estimating the displacement
between two frames, the calculated displacements are accumulated into a cumulative
displacement field. Then, the Green–Lagrangian strain for each frame is calculated based
on these accumulated displacements. The strain calculation software was developed using
Python, in combination with OpenCV libraries. Figure 4 shows the perpendicular strain
distribution to the welding direction in a selected region of interest behind the melt pool.
The figure also shows the mean strain curve for the same region over the frame sequences.

Figure 4. Strain distribution and three moments for the test data T2 (a) before the straining starts,
(b) at the crack initiation moment, and (c) after the initiation and during the propagation of the crack.
(d) Average strain history for the selected ROI over the frames.

The strain curve initially shows that the strain varies between 0 and 0.02 due to thermal
expansion near the weld pool before an external load is applied. However, when an external
load is applied (frame 1400), the strain response changes. Due to the accumulated external
strain and thermal expansion working in the same direction, the strain increases rapidly.
At frame 1675, the strain reaches its highest value, and this corresponds to the moment
when the crack is initiated. Once the crack has formed, it propagates through the material
and follows the solidification front. Due to crack propagation, the strain required is less
than the strain for crack formation, so the strain correspondent decreases slightly. When the
external load is stopped, the strain starts to decrease locally. Shortly thereafter, the strain
falls below the critical threshold and fluctuates between 0.02 and 0.04. This behavior of
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the strain was discussed further in [19]. While ref. [19] considered different ROIs, the
qualitative behavior of the strain is similar.

2.2. Neural Network Model Architecture

The calculation based on optical flow can obtain accurate results, but it takes a long
time to process each image pair. In this section, the use of neural networks to provide
results faster and reduce the computational cost is investigated. The strain-prediction
model adopts the encoder-decoder structure as shown in Figure 5. The encoder consists of
several successive convolutional layers to extract features from image pairs. The decoder
is symmetric to the encoder, and it can recover the strain field from narrow feature maps.
The network FlowNet [21] has been explored before. In this paper, its encoder is optimized
with two classic networks: ResNet and DenseNet, respectively. The decoder is also modified
to obtain the full-resolution strain field.

Figure 5. Structure of the strain prediction network.

2.2.1. The Encoder

A deep neural network extracts features by stacking several convolutional layers
and pooling layers. The features can be enriched with the deepening of the network
layer. However, two problems have been found in experiments: one is the vanishing and
the exploding gradient, which can be solved by using a batch normalization layer [45].
The other is the degradation problem. Adding more layers will not reduce the training
error but instead make it larger. ResNet proposed a residual learning framework to
address the degradation problem so that a very deep network can be built. There are
two branches in ResNet, as shown in Figure 6a; the first branch extracts features through
two or three convolutional layers, and the second branch is called identity mapping
and retains the original input. A shortcut connection module performs an element-wise
summation between the two branches. When the size of the input and output are the same,
the formulation F (x) + x can be directly executed (the solid line shortcut in Figure 6a).
When the size is different, a 1× 1 convolution with stride 2 is added to reduce the input
size (the dotted line shortcut in Figure 6a). The weight of the first branch can be close to
zero if identity mappings are optimal. In this way, the network of layer L + 1 contains more
image information than layer L, which ensures a deeper network will not be inferior than
its shallower counterpart.

DenseNet is an improvement of ResNet. It is also based on the shortcut connections.
The difference is that it adopts a more intensive connection. Figure 6b shows its internal
structure; each layer is connected to all of the subsequent layers so that the features of
each scale can be reused to maximize the information flow between the layers. Another
difference is that it concatenates the multiple feature maps instead of adding all of the
elements.
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(a) ResNet

(b) DenseNet

Figure 6. Internal architectures of ResNet and DenseNet.

In the encoder part, two networks are designed: one is StrainNetR, which extends
ResNet, and the other one is StrainNetD extending DenseNet. Table 3 lists the implementa-
tion details of StrainNetR and StrainNetD. StrainNetR consists of four different bottlenecks;
each bottleneck includes two 3× 3 convolutional layers. StrainNetD is implemented by
four dense blocks, and each block comprises a 1× 1 followed by a 3× 3 convolution with
stride 1. 1× 1 convolution is used to reduce dimensions, making the input of 3× 3 layer
smaller, thus improving the calculation efficiency. The transition layer is responsible for
connecting two consecutive dense blocks, which includes a batch normalization layer,
a 1× 1 convolutional layer, and a 2× 2 pooling layer. After the transition layer, the size of
the feature maps will be reduced by half.

Table 3. Configuration of StrainNetR and StrainNetD.

StrainNetR StrainNetD

Layer Name Kernel Size Output Size Layer Name Kernel Size Output Size

Convolution 3× 3, 32 32× 64 Convolution 3× 3, 32 32× 64

Bottleneck1
[

3× 3, 64

3× 3, 64

]
× 2 16× 32 Dense Block1

[
1× 1, Conv
3× 3, Conv

]
× 3 32× 64

Transition Layer1 1× 1, 64

2× 2, Pool
16× 32

Bottleneck2
[

3× 3, 128

3× 3, 128

]
× 2 8× 16 Dense Block2

[
1× 1, Conv
3× 3, Conv

]
× 6 16× 32

Transition Layer2 1× 1, 128

2× 2, Pool
8× 16

Bottleneck3
[

3× 3, 256

3× 3, 256

]
× 2 4× 8 Dense Block3

[
1× 1, Conv
3× 3, Conv

]
× 12 8× 16

Transition Layer3 1× 1, 256

2× 2, Pool
4× 8

Bottleneck4
[

3× 3, 512

3× 3, 512

]
× 2 2× 4 Dense Block4

[
1× 1, Conv
3× 3, Conv

]
× 8 4× 8

Pooling 2× 2, Pool 2× 4
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2.2.2. Decoder

After passing through the encoder, the output size of the feature map is reduced to
size 2× 4. The decoder will perform a series of up-sampling functions on previous outputs,
and each step can expand feature maps twice. The expanding part in FlowNet is slightly
modified; the process is shown in Figure 7.

First, the output of the previous layer are expanded through a deconvolution operation
(purple cuboid), and an upsampled coarse strain prediction is generated (red cuboid) in a
similar way. The corresponding feature maps with the same resolution in the encoder stage
(green cuboid) can be reused to preserve the earlier information and prevent the loss of
details. These three components are concatenated and used as the input to the next layer.
This operation is repeated 5 times to obtain the strain field with the same resolution as the
input, instead of bilinear interpolation in FlowNet, which may reduce the quality of results.

Figure 7. The decoder recovers the feature maps to predict the strain field.

3. Results of the Strain Prediction

In this section, the selection of parameters in the training process is introduced first;
then, a detailed analysis and comparison of the prediction results is given.

3.1. Training Details

StrainNetR and StrainNetD are both implemented using the PyTorch framework.
They are trained on a GPU Nvidia GeForce GTX 1060 6GB. The loss function is the average
endpoint error (AEE) between the ground truth (GT) and the predicted strain. The AEE is
obtained by calculating the Euclidean distance. In the dataset collected in Section 2.1, cracks
propagate in x direction. The strain in y direction is predicted in our experiments because
it reflects the occurrence of cracks. G(x, y) = (uT , vT) and E(x, y) = (uE, vE) represent the
ground truth and the predicted strain, respectively. The loss function of the y-Strain is
as follows:

AEE =
1

HW ∑
√
(vE − vT)2, (1)

where H and W are the height and width of the image, and HW is the total number of pixels.
The optimization method is Adam with default parameters beta1 = 0.9 and beta2 = 0.999.
The learning rate is initialized with 1e− 4 and then divided by half at 100 and 150 epochs.
A ROI area with the size of 64× 128 near the melt pool is selected. The total training epoch is
200 rounds. Figure 8 shows the AEE of two networks on the training set and verification set
in all epochs. It can be seen from the figures that the convergence of StrainNetD is slightly
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faster than that of StrainNetR, but this advantage is small. The AEE on the validation set of
StrainNetD is finally reduced to 0.0045, which is 6.3% less than that of StrainNetR.

(a) Training Set (b) Validation Set

Figure 8. Average endpoint error (AEE) in training and validation stages.

3.2. Results and Discussion

In this section, the trained models are first verified on two test videos; then, the pre-
dicted strains are compared with the ground truth. The real strain fields are generated by
calculating the spatial derivatives of the displacement fields obtained from the OpenCV
library. The program runs on Intel (R) Xeon (R) CPU E5-2620 v4 2.10 GHz, and it takes
about 80 ms to calculate each strain field. The deep learning method can directly predict
strain fields from image pairs and benefit from the high performance of the GPU, provid-
ing a great advantage in run time. Table 4 shows the comparison of the two models in
terms of accuracy and processing time. From the test results, it can be demonstrated that
StrainnetR and StrainnetD perform similarly in strain prediction, with AEEs of 0.0439 and
0.0427, respectively. The number of parameters of StraineNetD is less than half of those of
StraineNetR, but the run time of StrainNetD is 5.95 ms per image pair, which is 2.56 ms
slower than that of StrateNetR.

This is caused by the different network structures of the two models, due to the use of
1× 1 convolution, StrainetD has much fewer channel inputs and outputs than StrainetR, so
the number of parameters is reduced. However, the feature maps of StrainNetD are reduced
to half at the transition layer, as shown in Table 3, which leads to it being twice as large as
that of StratinetR. As a result, the number of convolution operations, measured in floating
point operations per second (flops), is larger than StratinetR. In addition, DenseNet needs
to load all of the previous layers, which will result in frequent memory accesses and thus
increase the processing time. In summary, StrainNetD is slightly better than StrainNetR
in terms of accuracy, but its prediction time for each image pair is 2 ms longer. Obviously,
in real-time prediction applications, StrainNetR is much better due to its higher efficiency.

As mentioned in the introduction, cracks start to occur when the strain accumulates
and exceeds a critical value. Figure 9 reflects the range of crack initiation and growth;
the vertical axis is the average strain in the y direction of each frame. In test data T1,
the crack appears at around 1400 frames, and the mean values predicted by StrainNetR and
StrainNetD both rise sharply at this time. Although there is still an 0.02 error at the peak
value of the strain, the range of crack generation is roughly consistent with the ground
truth. Both networks can correctly detect the crack range.

Table 4. Average endpoint errors and run times of the test set.

Model Parameters (M) Flops (G) AEE Time (ms)

StrainNetR 1.47 0.88 0.0439 3.39
StrainNetD 0.57 1.27 0.0427 5.95
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(a) Test data T1 (all frames).
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(b) Test data T2 (all frames).
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(c) Test data T1 (One quarter frames).
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(d) Test data T2(One quarter frames).

Figure 9. Average y-Strain value per frame.

In terms of processing speed, StrainNetR needs 3 ms to process each image pair as
listed in Table 4, whereas the image collection speed is about 0.85 ms per frame, which is
approximately one quarter of the prediction time. To achieve real-time strain prediction,
we can exploit the observation that the displacement between successive frames is very
small, and it is sufficient to use one in four frames as input to the networks (ignoring the
three frames between them) . Figure 9c,d show the strain prediction using the first, fifth,
ninth, etc., frame of the video. Reducing the number of analyzed frames to one quarter,
the total image-collection time (about 5260 and 4300 frames) remains the same, and the total
strain prediction time (about 1315 and 1075 frames) is reduced to one quarter, such that
both will are fairly similar; both take in total approximately 4.5 (T1) and 3.6 (T2) seconds.
The results show that even if frames are skipped, the strain can still be well predicted, and
the predicted crack range is consistent with the results including all of the frames .

Figure 10 gives some visual examples of predicted strain fields in different stages; the
range of the color bar is set according to the strain values of all frames. The first image is
the normal state. The second and the third images are stages when a crack starts to occur
and propagate. The deformation increases obviously at these stages, and the strain values
begin to accumulate. In the last image, the crack begins to shrink and disappears gradually.
Although the endpoint error of StrainNetD is a little smaller than that of StrainNetR, this
difference is almost invisible in the figure; the two networks give similar predictions during
crack initiation and propagation.
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(a) Raw frame.

(b) Ground truth.

(c) StrainNetR.

(d) StrainNetD.

Figure 10. Visual examples of predicted strain fields.

4. Conclusions

This paper develops two networks for measuring the strain field in the case of crack
occurrence during laser beam welding. The first network StrainNetR uses ResNet as
the feature extractor. The second network StrainNetD applies DenseNet, which is an
improvement of ResNet with more tight connections. The networks are trained and tested
in the real welding dataset collected using the CTW test. The strain prediction results
demonstrate that StrainNetD is slightly better than StrainNetR in terms of the AEE. On the
other hand, the feature maps of DenseNet are larger, and it requires more memory accesses.
The processing time of StrainNetD is nearly twice that of StrainNetR. Compared with
traditional methods, both networks can achieve approximately real-time strain prediction
within the tolerable error, which enables the timely identification of crack defects in the
welding process.

We have shown early results in the prediction of the strain field based on deep learning
methods, and further optimization is still necessary. For instance, the data set critically
affects the final results. The data in this paper is obtained under several different strain rates.
In order to enrich data diversity and improve model robustness, synthetic data are a good
choice. Generative adversarial networks (GAN) [46] are a widely used technology to gener-
ate desired images. We are considering to use a GAN to generate more weld defect images.
On the other hand, the accuracy of strain prediction can be further improved. Transformer
networks [47], which have achieved great success in natural language processing, have
been gradually explored in computer vision tasks. Next, we plan to combine or replace the
CNN model with a transformer model to enhance the accuracy and training efficiency.
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15. Pełczyński, P.; Szewczyk, W.; Bieńkowska, M. Single-camera system for measuring paper deformations based on image analysis.
Metrol. Meas. Syst. 2021, 28, 509–522.

16. Hoffmann, H.; Vogl, C. Determination of true stress-strain-curves and normal anisotropy in tensile tests with optical strain
measurement. CIRP Ann. 2003, 52, 217–220. [CrossRef]

17. Gong, X.; Bansmer, S.; Strobach, C.; Unger, R.; Haupt, M. Deformation measurement of a birdlike airfoil with optical flow and
numerical simulation. AIAA J. 2014, 52, 2807–2816. [CrossRef]

18. Bakir, N.; Gumenyuk, A.; Rethmeier, M. Investigation of solidification cracking susceptibility during laser beam welding using
an in-situ observation technique. Sci. Technol. Weld. Join. 2018, 23, 234–240. [CrossRef]

http://doi.org/10.1080/09507116.2012.753245
http://dx.doi.org/10.1080/09507116.2011.592689
http://dx.doi.org/10.1080/09507116.2012.715877
http://dx.doi.org/10.1179/1362171814Y.0000000270
http://dx.doi.org/10.1080/13621718.2017.1422634
http://dx.doi.org/10.1007/s40194-013-0027-5
http://dx.doi.org/10.1007/s40194-017-0524-z
http://dx.doi.org/10.1016/j.optlaseng.2017.08.007
http://dx.doi.org/10.1016/S0007-8506(07)60569-1
http://dx.doi.org/10.2514/1.J052910
http://dx.doi.org/10.1080/13621718.2017.1367550


Appl. Sci. 2023, 13, 2930 14 of 15

19. Bakir, N.; Pavlov, V.; Zavjalov, S.; Volvenko, S.; Gumenyuk, A.; Rethmeier, M. Development of a novel optical measurement
technique to investigate the hot cracking susceptibility during laser beam welding. Weld. World 2019, 63, 435–441. [CrossRef]

20. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

21. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 2758–2766.

22. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 2462–2470.

23. Ranjan, A.; Black, M.J. Optical flow estimation using a spatial pyramid network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4161–4170.

24. Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8934–8943.

25. Hui, T.W.; Tang, X.; Loy, C.C. Liteflownet: A lightweight convolutional neural network for optical flow estimation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8981–8989.

26. Hur, J.; Roth, S. Iterative residual refinement for joint optical flow and occlusion estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5754–5763.

27. Yin, Z.; Darrell, T.; Yu, F. Hierarchical discrete distribution decomposition for match density estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6044–6053.

28. Yang, G.; Ramanan, D. Volumetric correspondence networks for optical flow. Adv. Neural Inf. Process. Syst. 2019, 32, 794–805.
29. Zhao, S.; Sheng, Y.; Dong, Y.; Chang, E.I.; Xu, Y. Maskflownet: Asymmetric feature matching with learnable occlusion mask.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 6278–6287.

30. Teed, Z.; Deng, J. Raft: Recurrent all-pairs field transforms for optical flow. In Proceedings of the European Conference on
Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 402–419.

31. Sui, X.; Li, S.; Geng, X.; Wu, Y.; Xu, X.; Liu, Y.; Goh, R.; Zhu, H. CRAFT: Cross-Attentional Flow Transformer for Robust Optical
Flow. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2022; pp. 17602–17611.

32. Xu, H.; Zhang, J.; Cai, J.; Rezatofighi, H.; Tao, D. GMFlow: Learning Optical Flow via Global Matching. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8121–8130.

33. Zhao, S.; Zhao, L.; Zhang, Z.; Zhou, E.; Metaxas, D. Global Matching with Overlapping Attention for Optical Flow Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 17592–17601.

34. Hu, L.; Zhao, R.; Ding, Z.; Ma, L.; Shi, B.; Xiong, R.; Huang, T. Optical Flow Estimation for Spiking Camera. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 17844–17853.

35. Rezaie, A.; Achanta, R.; Godio, M.; Beyer, K. Comparison of crack segmentation using digital image correlation measurements
and deep learning. Constr. Build. Mater. 2020, 261, 120474. [CrossRef]

36. Boukhtache, S.; Abdelouahab, K.; Berry, F.; Blaysat, B.; Grediac, M.; Sur, F. When deep learning meets digital image correlation.
Opt. Lasers Eng. 2021, 136, 106308. [CrossRef]

37. Yang, R.; Li, Y.; Zeng, D.; Guo, P. Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and
strain measurement. J. Mater. Process. Technol. 2022, 302, 117474. [CrossRef]

38. Wang, Y.; Zhao, J. DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network.
Opt. Lasers Eng. 2023, 160, 107278. [CrossRef]

39. Wang, Y.; Luo, Q.; Xie, H.; Li, Q.; Sun, G. Digital image correlation (DIC) based damage detection for CFRP laminates by using
machine learning based image semantic segmentation. Int. J. Mech. Sci. 2022, 230, 107529. [CrossRef]

40. Bakir, N.; Gumenyuk, A.; Rethmeier, M. Numerical simulation of solidification crack formation during laser beam welding of
austenitic stainless steels under external load. Weld. World 2016, 60, 1001–1008. [CrossRef]

41. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

43. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

44. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the
IJCAI’81: 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24 August 1981; Volume 81.

45. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.

http://dx.doi.org/10.1007/s40194-018-0665-8
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.conbuildmat.2020.120474
http://dx.doi.org/10.1016/j.optlaseng.2020.106308
http://dx.doi.org/10.1016/j.jmatprotec.2021.117474
http://dx.doi.org/10.1016/j.optlaseng.2022.107278
http://dx.doi.org/10.1016/j.ijmecsci.2022.107529
http://dx.doi.org/10.1007/s40194-016-0357-1


Appl. Sci. 2023, 13, 2930 15 of 15

46. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

47. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3422622

	Introduction
	Methods
	Data Collection
	Welding under External Strain
	Data Acquisition
	Strain Estimation

	Neural Network Model Architecture
	The Encoder
	Decoder


	Results of the Strain Prediction
	Training Details
	Results and Discussion

	Conclusions
	References

