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ABSTRACT

The shape of the weld pool in laser beam welding plays a major role in understanding the dynamics of the melt and its solidification behavior.
The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal
section, a butt joint configuration of 15mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by
means of a high-speed video camera and two thermal imaging cameras, a mid-wavelength infrared camera and a newly developed infrared
camera working in the spectral range of 500 to 540 nm, making it perfectly suited for temperature measurements of molten materials. The obser-
vations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld
pool. A bulge region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a tran-
sient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mecha-
nism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser
beam welding process. The model considers the local temperature field, the effects of phase transition, thermocapillary convection, natural con-
vection, and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the
movement of the laser heat source are the dominant factors for the formation of the bulge region. A good correlation between the numerically
calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface was found.

Key words: bulging effect, high power laser beam welding, process simulation, solidification, hot cracking
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I. INTRODUCTION

In recent years, due to the significant development of laser
sources and due to their unique advantages compared to conventional
welding processes, laser beam welding of thick metal parts became an
established processing tool allowing for increased industrial produc-
tivity. With the available high laser power of up to 100 kW,1,2 it
becomes possible to weld samples of thickness up to 50mm in a
single pass welding. As a result of the high degree of focusability,
especially when comparing the reachable radiation intensities to the
local power deposition in multipass arc welding methods, such as Gas
Metal Arc Welding and Submerged Arc Welding, the welding speed,
penetration, and efficiency increase dramatically. Additionally, the net

heat input needed to weld comparable samples in the case of laser
beam welding is lower than that required by using the traditional
processes. This provides the benefits of a narrow heat affected
zone and minimizes the thermally induced welding distortion.3

Moreover, when using conventional welding methods, mostly mul-
tiple passes to meet the desired welding depth are inevitable, e.g.,
for the production of thick-walled pipelines for the oil and gas
industry.4,5 Nevertheless, the laser beam welding technology associ-
ated with weld pool geometries of high depth-to-width ratio and
different weighting of the underlying physics compared to tradi-
tional welding techniques requires a proper treatment and under-
standing of the underlying effects to avoid welding defects like
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solidification cracking, which are characteristic for this technique.
Additionally, the complicated physics behind the laser beam welding
process and the number of occurring physical phenomena make an
estimation of the most important process quantities such as the tem-
perature profile and the shape of the weld pool very challenging. The
same also holds for the appropriate choice of the relevant process
parameters like welding speed, laser power, and focal position.

Therefore, the aim of the present work was the experimental and
the numerical investigation of the resulting weld pool shape obtained
by high power laser beam welding with emphasis on the temporal
and spatial evolution of the solidification region in the melt.

The occurring phenomena in the weld pool shape were iden-
tified being potentially beneficial for the formation of defects during
the solidification stage, e.g., the hot cracking. Shida et al. have found a
relation between the weld pool shape and the solidification cracking
as they studied the effect of the welding parameters of electron beam
welding on the weld quality. However, they have observed a small
cavity in the rear part of the weld pool resulting through the variation
of the focus position by the electron beam welding process. The
observed cavity has shown significant influence on the solidification
crack initiation.6 The locally delayed solidification phenomenon in the
electron beam welding was also investigated from Tsukamoto et al.7

A close link between the delay in the solidification, the solidification
cracking, and the porosity was observed. Gebhardt et al.8 have noted
a similar phenomenon during laser beam welding of thick structures.
They called it bulging in the weld. Their numerical models attributed
a significant influence of the investigated bulging of the temperature
field to the mechanical stress distribution, which is subsequently con-
tributing to the formation of hot cracking during the solidification in
the mushy zone (see Ref. 8). Barbetta et al.9 confirmed a strong rela-
tion between the bulging in the weld and the occurrence of solidifica-
tion cracks, as the solidification crack was always associated with a
bulge and thus a modification of the temperature distribution.
Consequently, these phenomena, bulging and hot cracking, are related
to each other by the delayed solidification at the rear part of the weld
pool (see Ref. 9). To the best of the authors’ knowledge, there is only
little research on the occurrence of bulging during high penetration
welding with lasers, although similar effects could be observed in
recent numerical investigations (see Refs. 10–13).

In general, the weld pool shape is mainly affected by the
dynamic interaction of the heat transport, fluid flow, and the liquid
metal solidification behavior. To allow for a distinctive investigation
of the elucidated bulging near the solidification front in high power
laser beam welding, a butt configuration of transparent quartz glass
and a low-alloyed steel was used in the present study. This configu-
ration facilitates an optical observation and visualization of the
weld pool shape in the longitudinal section and thus a qualitative
deduction of the underlying effects during bulging as well as a
comparison to numerical modeling.

A similar configuration of experiments was already performed
by Li et al.14 to study the plasma and the keyhole behavior during
high power deep penetration fiber laser beam welding of stainless
steel. Zhang et al.15 also successfully used the butt configuration of
quartz glass and zinc to study its behavior during laser beam
welding. Wu et al. employed this experimental setup in combination
with an external laser illumination to study the spatter formation in
fiber laser welding of aluminum alloy.16

The main objective of the presented study was to analyses the
weld pool shape in the longitudinal section qualitatively depending
on the laser beam process in order to investigate the delay in the
solidification front called bulging. Along with the numerical work
presented in this paper, a high-speed video camera and two thermal
imaging cameras, a mid-wavelength infrared (MWIR) camera and a
newly developed infrared camera working in the spectral range of
500 to 540 nm, making it perfectly suited for temperature measure-
ments of molten materials, were employed to achieve this purpose
on experimental basis.

II. NUMERICAL MODELING

It is a well-known fact that the physics representing the laser
material interaction and thus the physics behind the laser beam
welding process is very complex and highly coupled, which lead to
difficulties in the numerical computation. Besides this fact, the proper
numerical assessment of the shape of the weld pool and the thermal
history of the welded part remains one of the most important tasks
for engineers and researchers. In this paper, a methodology for the
numerical solution of the Computational Fluid Dynamics (CFD)
problem in the full-penetration keyhole laser beam welding process is
presented. The numerical setup including the geometry of the work-
piece, the initial state, and the boundary conditions can be seen in
Fig. 1. The numerical model was implemented and solved with the
commercial software ANSYS Fluent. The simulation of the process
under investigation was done to obtain the quasi-steady-state weld
pool geometry by computing the transient development of the weld
pool geometry until reaching an equilibrium. It considers the most
important physical phenomena decisive for the distributions of the
velocity and the temperature field, namely, the effects of Marangoni
convection, phase transition, natural convection, and temperature-
dependent material properties up to evaporation temperature.

Since strongly coupled physical aspects and highly nonlinear
system of equations are needed to be taken into account for the
modeling of the laser beam welding process, a simplified form of
the mathematical model was used to improve the numerical stabil-
ity and to reduce the computing time. The basic assumptions made
for the fluid flow and the temperature field simulation are similar

FIG. 1. Geometry, initial, and boundary conditions of the CFD model.

Journal of
Laser Applications ARTICLE scitation.org/journal/jla

J. Laser Appl. 31, 022413 (2019); doi: 10.2351/1.5096133 31, 022413-2

© 2019 Laser Institute of America

https://lia.scitation.org/journal/jla


to those used by Bachmann et al. in Refs. 17 and 18. They are as
follows:

• The weld pool shape and the local temperature field were
described by an Eulerian approach. Thus, effects caused by
keyhole oscillations or unstable free surfaces were not considered.

• The size of the computational model was adapted to fulfill the
adiabatic boundary conditions (see Fig. 1).

• The geometry of the free surfaces and the keyhole was fixed.
Furthermore, an inclination of the keyhole geometry was not
considered as the welding speed of the process was low. All
dynamic effects of the recoil pressure on the melt pool were
neglected and ideally balanced by surface tension forces.

• The keyhole geometry was simplified, and it was used as a model
parameter to adapt the numerical to the experimental results
(see Fig. 3).

• Shear stress due to the interaction of metal vapor and liquid
metal was neglected.

• The amount of latent heat was considered by the apparent heat
capacity method.19

• A turbulent flow pattern, based on the high velocities on both
upper and lower sides, caused by the Marangoni driven flow, and
the influence of the keyhole geometry on the flow, was consid-
ered by the standard κ–ε turbulence model.

• Heat losses by radiation were not considered due to the high
relation of volume versus surface of the plate.

• The basic equations representing the conservation of mass,
momentum, and energy for incompressible flow were used,
as they are implemented within the simulation framework of
ANSYS Fluent to obtain the velocity and pressure fields.20 These
were strongly coupled, whereby the coupling variables for the
heat and mass transfer were the mass density, ρ, and the velocity
vector of the molten metal, u.20 Hence, the influence of the tem-
perature distribution on the mass transport and vice versa was
considered. In Fig. 2, the complex interaction of the single physics
can be seen. The differential equations were adjusted to account
for natural and thermocapillary convection, latent heat, and solid–
liquid phase transformation. The energy input was considered by
setting the keyhole surface to the evaporation temperature of the
material. The buoyancy force driven by the density deviation
caused by the temperature difference was modeled by the well-
known Boussinesq approximation.21 The zone of the solid–liquid

phase transformation or also known as the “mushy zone” was con-
sidered by the Carman–Kozeny equation. This enthalpy–porosity
approach allows the modeling of the welding process as a single
phase by using a temperature-dependent liquid fraction, which
calculates the amount of liquid in any element to be able to dis-
tinguish between the solid and the liquid phase.22 The needed
model constants for the turbulence model were determined from
experimental data.23 In addition, the Kays–Crawford heat trans-
port model was used to account for the amount of turbulence-
induced heat conductivity.24 Thereby, the amount of fusion heat
was released uniformly within the solid–liquid transformation
zone. Hereby, the phase change temperature range in the model
was chosen to be within a bandwidth of 50 K. The geometrical
dimensions of the model were 70 × 10 × 15 mm3 (see Fig. 3).
A symmetry plane was introduced to the model; thus, the com-
putational effort and time were significantly improved. The com-
putational domain was discretized by a polygonal mesh of
tetrahedral and triangular elements. The total number of mesh
elements was about 1.1 × 106 and had a minimum element size
of 0.1 mm at the free surfaces and the keyhole wall. The mesh is
visualized in Fig. 3.

III. EXPERIMENTAL SETUP

For the welding experiments, a specially designed setup was
necessary due to the optical inaccessibility to allow for the observa-
tion of the weld pool shape during high power laser beam welding.
Therefore, butt welding experiments of 15 mm thick structural steel
(S355) using a transparent quartz glass were conducted. The geo-
metric dimensions of the workpiece are shown in the sketch of the
experimental setup in Fig. 4. The laser beam welding process was
performed with a fiber laser at a welding speed of 2 m/min, a laser
power of 18 kW, a focal position of −5 mm, and a focal diameter of
0.56 mm.

The transparent quartz glass used in the present investigation
was chosen due to its adequate physical properties. The material

FIG. 2. Coupling variables used in the CFD simulation of the laser beam
welding process.

FIG. 3. Mesh used for the calculation.
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offers a suitable transparency for the laser wavelength of 1070 nm
—the transmission properties for wavelengths between 200 nm and
2500 nm were up to 90%. Due to its unique properties such as low
thermal conductivity, low thermal expansion coefficient, excellent
thermal shock resistance, and the high melting temperature being
all not comparable to those of the used steel, the glass–steel inter-
face was considered as the plane of symmetry of the welding
process. The center of the laser spot was adjusted to lie exactly in
the symmetry plane thus distributing half of the laser radiation on
the steel plate and the other half on the quartz glass. The geometric
characteristics of the resulting weld pool in the symmetry plane
between the quartz glass and the metal plate were observed using
an infrared camera, a thermo camera, and a high-speed camera
from the glass side simultaneously. The sensor in the infrared
camera allowed for a detection of an MWIR light, e.g., from 1000
nm up to 5000 nm. This intersection between the spectral transmis-
sion of the glass and the detecting range of the infrared camera
allowed the monitoring of the thermal profile of the weld pool
through the glass. Additionally, the results of the operating in
visual spectral range thermo camera were added to determine the
shape of the solidification isotherm of the weld pool.

The used thermo camera works with the special wavelength
range of 500–540 nm. This unique measuring range neutralizes
the laser radiation and their reflections. The quartz glass for this
wavelength range is fully transparent, which allows the measure-
ments without any hindering to the measuring wave.

The performed experiments were carried out aiming at a qual-
itative observation of the geometry of the weld pool in the symme-
try plane.

IV. RESULTS AND DISCUSSION

From the high-speed camera images, it was observed that the
dimensions of the melt vary depending on the penetration depth
with respect to time (see Fig. 5).

The content of the observed region was a mixture of liquid
metal, metal vapor, and laser reflections on the keyhole surfaces.
The bulging region monitored by the high-speed camera was
located near but outside the keyhole region. The measurements of
the infrared and the thermo camera were used to confirm the
observations of the high-speed camera imaging (see Figs. 6 and 7).
Hence, this bright region defined by the yellow line represented an

isotherm within the zone of the molten metal, which is bounded
by the isotherms of the evaporation and the solidus temperatures.
Consequently, it was expected that the observed bulge in the
mixture influenced the solidification front thus changing the weld
pool geometry.

The longitudinal view of the weld pool in the symmetry plane
showed a delay in the solidification behavior of the material in
the middle of the symmetry plane. The delay and the related
thereto hot crack formation in the bulging region are represented
in Fig. 8(a). In Fig. 8(b), cross section with a longitudinal hot crack
appearing in the bulging region is shown. The areas in the vicinity
of the top and bottom surfaces of the weld pool were found to be
teardrop-shaped. Two necking areas, situated between the bulge,
the upper, and the lower parts of the weld pool were identified.
In addition, the qualitative shape of the solidification front in the
longitudinal direction was assumed to be a parallel shift of the
shape of the bright region, defined by the yellow line in Fig. 5.

However, the experimental results were not sufficient for a
quantitative investigation of the weld pool shape. To improve the
understanding of this problem by giving a physical explanation of
the origin of the lower and upper necking as well as the bulging
region numerical simulation was used. The numerically obtained
results allowed to analyze the interaction of the different physical
aspects. Thus, their impact on the weld pool geometry can be
evaluated.

The aim of the proposed numerical model was to predict the
size and the shape of the melt pool in the steady-state zone of the
weld. Thus, the most important physical effects for the heat and
mass transfer, such as thermocapillary convection, latent heat,
and buoyancy force, were considered. The outer contour of the

FIG. 4. Sketch of the experimental setup for butt joint configuration of structural
steel S355 and quartz glass.

FIG. 6. View of the longitudinal section through the quartz glass using an
infrared camera.

FIG. 5. View of the longitudinal section through the quartz glass using a
high-speed camera.
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three-dimensional weld pool geometry is defined by the liquidus
temperature and can be seen in Fig. 9.

The liquidus isotherm in the symmetry plane of the weld is
also shown in Fig. 10. The final steady-state geometry of the weld
pool can be classified in three regions. The regions on the upper
and lower part of the specimen and the bulge region in the middle

of the plate. The liquid metal flow directions with the highest
impact on the weld pool behavior were identified and are shown in
Fig. 11. Their interaction determines the quasi-steady-state weld
pool geometry, which travels through the specimen by means of
the movement of the laser spot with respect to time. The simula-
tion was used to improve the understating of the formation and the

FIG. 8. (a) Schematic representation of the formation of a hot crack in the
experimentally observed bulging region. (b) Cross section with a longitudinal hot
crack appearing in the bulging region.

FIG. 7. View of the longitudinal section through the quartz glass using a thermo
camera.

FIG. 9. Computed three-dimensional weld pool shape defined by the liquidus
temperature.

FIG. 10. Numerically obtained temperature and velocity fields in the symmetry
plane of the weld.
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development of the main flows in the weld pool. The decrease in
the temperature values along the weld pool surface away from the
keyhole results in an increase of the corresponding local surface
tension. Due to this, the gradient of the surface tension increases
and the melt is accelerated away from the keyhole by tangential
shear stresses. As it can be seen, the regions on the upper and
lower side in front of the keyhole caused by the Marangoni convec-
tion are very small in comparison to those behind the keyhole.
That can be easily explained by the difference in the amount of
molten material in the two areas. However, it must also be men-
tioned here that the isotherms in front of the keyhole lie much
closer to each other, which results in a steeper temperature gradient
and consequently causes a higher acceleration of the melt. The cal-
culated velocity of the molten metal within the weld pool is very
small compared to its maximum calculated at the free surfaces in
front of the keyhole. The analysis of the numerical results showed
that the influence of the natural convection on the weld bead
geometry is very small in comparison to the Marangoni convection.
Hence, this effect could be neglected in further computations.
The shape of the middle region is believed to be mainly influenced
by the experimentally observed bulge behind the keyhole and the
high processing speed. The observed velocities of the molten mate-
rial in the middle region were very small compared to the values in
the upper and lower region. Hence, the edge of the middle region
is nearly a parallel shift of the keyhole edge, which forms, together
with the two backflows due to the Marangoni effect, the observed
bulge. The weld pool in the steady-state zone of the laser beam
welding process represents a simple thermal and mass equilibrium
defined by the movement of the laser source and the solidification
speed at the trailing part of the molten pool. By moving the laser
head, the cold material in front of it is molten and added to the
melt pool. This is then transferred by the different flows in the weld
pool. In steady-state, the same amount of melt solidifies at the rear
side of the weld. In the present model, the thermocapillary driven
flow dominates, and a cooler material is driven back to the vicinity
of the keyhole ensuring the mass conservation. Hence, the two
necking areas and consequently the bulge are formed (see Fig 10).

By simply neglecting the local convection in the molten pool and
considering the trivial case of heat transfer with a constant convec-
tive term in the flow equations, the rear edge of the weld pool
would be a simple parallel shift to the keyhole boundary caused by
the movement of the laser spot. Without the backflows on the
upper and lower side due to Marangoni convection, there will be
no bulge in the vertical center of the weld pool. Thus, the interac-
tion of the physical effects, and here mainly due to the surface
tension driven acceleration of melt at the free surfaces, plays a sig-
nificant role in forming the spatial characteristics of the weld pool.

V. CONCLUSIONS

In this work, experimental and numerical analyses of the weld
pool shape in laser welding of a low-alloyed steel (S355) were
carried out.

Experimentally, a depth dependency of the weld pool dimen-
sions was found. At the top and the bottom surfaces, the weld pool
has taken a teardrop shape, whereas a bulging approximately in the
middle of the depth was observed. The bulging was separated from
the top and the bottom with necking areas.

In the numerical simulation, a simplified model was developed
to reproduce the experimentally observed phenomena and to
improve the understanding of the formation and the development of
the bulging. However, this model allowed to analyze and thus to
understand more deeply the formation of the bulging mechanism in
the laser beam welding process. According to the simulation results,
it can be concluded that the interaction of the movement of the laser
source with the Marangoni vortex leads to a teardrop shape at the
upper and bottom surface of the workpiece. Additionally, it shows
that the bulging in the weld is a result of the backflows on the upper
and lower side due to the thermocapillary driven flows.

Definitely, the observed weld pool shape has a significant
influence on the time-related and local stress distribution during
solidification and consequently on the solidification cracking,
which needs further investigations.
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