154 research outputs found

    Normal Approximation to a Sum of Geometric Random Variableswith Application to Ammunition Stockpile Planning

    Get PDF
    The normal approximation for a sum of geometric random variables has been examined. Thisapproximation is relevant to the determination of direct-fire ammunition stockpile levels in adefence setting. Among the methodologies available for this assessment, one is a target-orientedmethodology. This approach calculates the number of rounds necessary to destroy a givenfraction of the enemy force and infrastructure. The difficulty is that the number of rounds requiredcannot be determined analytically. An obvious numeric approach is Monte Carlo simulation.Another is the approximation approach which has several advantages like it is easy to implement.and is accurate even in the case where the number of targets is low

    Cassini nightside observations of the oscillatory motion of Saturn's northern auroral oval

    Get PDF
    In recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2 h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally “oscillating” magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion

    Temperature correction of spectra to improve solute concentration monitoring by in situ ultraviolet and mid-infrared spectrometries towards isothermal local model performance

    Get PDF
    Changes in temperature can significantly affect spectroscopic-based methods for in situ monitoring of processes. As varying temperature is inherent to many processes, associated temperature effects on spectra are unavoidable, which can hinder solute concentration determination. Ultraviolet (UV) and mid-infrared (IR) data were acquired for l-ascorbic acid (LAA) in MeCN/H2O (80:20 w/w) at different concentrations and temperatures. For both techniques, global partial least squares (PLS) models for prediction of LAA concentration constructed without preprocessing of the spectra required a high number of latent variables to account for the effects of temperature on the spectra (root mean square error of cross validation (RMSECV) of 0.18 and 0.16 g/100 g solvent, for UV and IR datasets, respectively). The PLS models constructed on the first derivative spectra required fewer latent variables, yielding variable results in accuracy (RMSECV of 0.23 and 0.06 g/100 g solvent, respectively). Corresponding isothermal local models constructed indicated improved model performance that required fewer latent variables in the absence of temperature effects (RMSECV of 0.01 and 0.04 g/100 g solvent, respectively). Temperature correction of the spectral data via loading space standardization (LSS) enabled the construction of global models using the same number of latent variables as the corresponding local model, which exhibited comparable model performance (RMSECV of 0.06 and 0.04 g/100 g solvent, respectively). The additional chemometric effort required for LSS is justified if prediction of solute concentration is required for in situ monitoring and control of cooling crystallization with an accuracy and precision approaching that attainable using an isothermal local model. However, the model performance with minimal preprocessing may be sufficient, for example, in the early phase development of a cooling crystallization process, where high accuracy is not always required. UV and IR spectrometries were used to determine solubility diagrams for LAA in MeCN/H2O (80:20 w/w), which were found to be accurate compared to those obtained using the traditional techniques of transmittance and gravimetric measurement. For both UV and IR spectrometries, solubility values obtained from models with LSS temperature correction were in better agreement with those determined gravimetrically. In this first example of the application of LSS to UV spectra, significant improvement in the predicted solute concentration is achieved with the additional chemometric effort. There is no extra experimental burden associated with the use of LSS if a structured approach is employed to acquire calibration data that account for both temperature and concentration

    Wholesale pricing in a small open economy

    Get PDF
    This paper addresses the empirical analysis of wholesale profit margins using data of the Dutch wholesale sector, 1986. At the heart of the analysis is the typical nature of wholesale production: wholesalers do not produce a tangible product, but offer a service capacity. This has an immediate impact on the identification, interprelation and measurement of determinants of profit variations. A model is set up to explain variations in wholesale profit margins, which is inspired by two widely applied approaches to industry pricing: the behavioural mark-up model and the marginalist price-cost model

    Pharmacogenomics of 17-alpha hydroxyprogesterone caproate for recurrent preterm birth: a case–control study

    Get PDF
    Objective: To compare maternal genotypes between women with and without significant prolongation of pregnancy in the setting of 17-alpha hydroxyprogesterone caproate (17-P) administration for the prevention of recurrent preterm birth (PTB). Design: Case–control. Setting: Three tertiary-care centres across the USA. Population: Women (n = 99) with ≥ 1 prior singleton spontaneous PTB, receiving 17-P. Methods: Women were classified as having successful prolongation of pregnancy during the 17-P treated pregnancy, in two ways: (1) Definition A: success/non-success based on difference in gestational age at delivery between 17-P-treated and untreated pregnancies (success: delivered ≥ 3 weeks later with 17-P) and (2) Definition B: success/non-success based on reaching term (success: delivered at term with 17-P). Main outcome measures: To assess genetic variation, all women underwent whole exome sequencing. Between-group sequence variation was analysed with the Variant Annotation, Analysis, and Search Tool (VAAST). Genes scored by VAAST with P < 0.05 were then analysed with two online tools: (1) Protein ANalysis THrough Evolutionary Relationships (PANTHER) and (2) Database for Annotation, Visualization, and Integrated Discovery (DAVID). Results: Using Definition A, there were 70 women with successful prolongation and 29 without; 1375 genes scored by VAAST had P < 0.05. Using Definition B, 47 women had successful prolongation and 52 did not; 1039 genes scored by VAAST had P < 0.05. PANTHER revealed key differences in gene ontology pathways. Many genes from definition A were classified as prematurity genes (P = 0.026), and those from definition B as pharmacogenetic genes (P = 0.0018); (P, non-significant after Bonferroni correction). Conclusion: A novel analytic approach revealed several genetic differences among women delivering early vs later with 17-P. Tweetable abstract: Several key genetic differences are present in women with recurrent preterm birth despite 17-P treatment

    A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study

    Get PDF
    Background Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity. Methods In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications. Results Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1. Conclusions The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management

    Collaborative Cohort of Cohorts for COVID-19 Research (C4R) Study: Study Design

    Get PDF
    The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye
    corecore