57 research outputs found

    Dynamic Protein Interactions of the Polycomb Repressive Complex 2 during Differentiation of Pluripotent Cells

    Get PDF
    Polycomb proteins assemble to form complexes with important roles in epigenetic regulation. The Polycomb Repressive Complex 2 (PRC2) modulates the di- and tri-methylation of lysine 27 on histone H3, each of which are associated with gene repression. Although three subunits, EZH1/2, SUZ12, and EED, form the catalytic core of PRC2, a wider group of proteins associate with low stoichiometry. This raises the question of whether dynamic variation of the PRC2 interactome results in alternative forms of the complex during differentiation. Here we compared the physical interactions of PRC2 in undifferentiated and differentiated states of NTERA2 pluripotent embryonic carcinoma cells. Label-free quantitative proteomics was used to assess endogenous immunoprecipitation of the EZH2 and SUZ12 subunits of PRC2. A high stringency data set reflecting the endogenous state of PRC2 was produced that included all previously reported core and associated PRC2 components, and several novel interacting proteins. Comparison of the interactomes obtained in undifferentiated and differentiated cells revealed candidate proteins that were enriched in complexes isolated from one of the two states. For example, SALL4 and ZNF281 associate with PRC2 in pluripotent cells, whereas PCL1 and SMAD3 preferentially associate with PRC2 in differentiating cells. Analysis of the mRNA and protein levels of these factors revealed that their association with PRC2 correlated with their cell state-specific expression. Taken together, we propose that dynamic changes to the PRC2 interactome during differentiation may contribute to directing its activity during cell fate transitions

    Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet

    Get PDF
    In 1971, an international symposium, Sorghum in the Seventies , organized by the All India Coordinated Sorghum Improvement Project with support from the Indian Council of Agricultural Research and the Rockefeller Foundation was held in Hyderabad, India. The symposium reviewed the current knowledge base of the scientific, production and nutritional aspects of sorghum as a crop and as a human food. In 1981, ICRISAT, INTSORMIL, and the Indian Council of Agricultural Research (ICAR) sponsored Sorghum in the Eighties , an international symposium at ICRISAT Center in India, to review the achievements accomplished in sorghum research during the preceding 10 years. They reviewed sorghum\u27s role as an important cereal food, feed, construction material, and fuel in the developed and developing countries. In 1994, after discussion among INTSORMIL and ICRISAT scientists, it was recognized that an international meeting on the genetic improvement of grain sorghum and pearl millet was needed and would be strongly supported by the international sorghum and millet research community. Those discussions led to the September 1996 International Conference on Genetic Improvement of Sorghum and Pearl Millet. Grain sorghum and pearl millet are major food grains in the semiarid tropics of Africa, India, and South America. Sorghum ranks fifth among the world\u27s cereals, following wheat, maize, rice, and barley. F AO includes all millets together in its production estimates. Current estimates indicate that annual world sorghum production is approximately 61 million metric tons and world millet production is approximately 20 million metric tons. The inaugural speaker of this 1996 conference, Dr. Leland House, indicated global population is projected to increase to nine billion people by the year 2030 and is projected to increase most rapidly in the developing world. This will create a growing demand for food, as well as potential new market opportunities for food products developed from these basic grains

    Does Strategic Planning Improve Organizational Performance? A Meta-Analysis

    Get PDF
    Strategic planning is a widely adopted management approach in contemporary organizations. Underlying its popularity is the assumption that it is a successful practice in public and private organizations that has positive consequences for organizational performance. Nonetheless, strategic planning has been criticized for being overly rational and for inhibiting strategic thinking. This article undertakes a meta-analysis of 87 correlations from 31 empirical studies and asks, Does strategic planning improve organizational performance? A random-effects meta-an

    Hydraulický agregát s pneumatickým motorem

    Get PDF
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Fakulta strojní. Katedra (338) hydromechaniky a hydraulických zařízen

    Arctic Holocene proxy climate database – New approaches to assessing geochronological accuracy and encoding climate variables

    Get PDF
    We present a systematic compilation of previously published Holocene proxy climate records from the Arctic. We identified 170 sites from north of 58° N latitude where proxy time series extend back at least to 6 cal ka (all ages in this article are in calendar years before present – BP), are resolved at submillennial scale (at least one value every 400 ± 200 years) and have age models constrained by at least one age every 3000 years. In addition to conventional metadata for each proxy record (location, proxy type, reference), we include two novel parameters that add functionality to the database. First, "climate interpretation" is a series of fields that logically describe the specific climate variable(s) represented by the proxy record. It encodes the proxy–climate relation reported by authors of the original studies into a structured format to facilitate comparison with climate model outputs. Second, "geochronology accuracy score" (chron score) is a numerical rating that reflects the overall accuracy of 14C-based age models from lake and marine sediments. Chron scores were calculated using the original author-reported 14C ages, which are included in this database. The database contains 320 records (some sites include multiple records) from six regions covering the circumpolar Arctic: Fennoscandia is the most densely sampled region (31% of the records), whereas only five records from the Russian Arctic met the criteria for inclusion. The database contains proxy records from lake sediment (60%), marine sediment (32%), glacier ice (5%), and other sources. Most (61%) reflect temperature (mainly summer warmth) and are primarily based on pollen, chironomid, or diatom assemblages. Many (15%) reflect some aspect of hydroclimate as inferred from changes in stable isotopes, pollen and diatom assemblages, humification index in peat, and changes in equilibrium-line altitude of glaciers. This comprehensive database can be used in future studies to investigate the spatio-temporal pattern of Arctic Holocene climate changes and their causes. The Arctic Holocene data set is available from NOAA Paleoclimatology

    Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet

    Get PDF
    In 1971, an international symposium, Sorghum in the Seventies , organized by the All India Coordinated Sorghum Improvement Project with support from the Indian Council of Agricultural Research and the Rockefeller Foundation was held in Hyderabad, India. The symposium reviewed the current knowledge base of the scientific, production and nutritional aspects of sorghum as a crop and as a human food. In 1981, ICRISAT, INTSORMIL, and the Indian Council of Agricultural Research (ICAR) sponsored Sorghum in the Eighties , an international symposium at ICRISAT Center in India, to review the achievements accomplished in sorghum research during the preceding 10 years. They reviewed sorghum\u27s role as an important cereal food, feed, construction material, and fuel in the developed and developing countries. In 1994, after discussion among INTSORMIL and ICRISAT scientists, it was recognized that an international meeting on the genetic improvement of grain sorghum and pearl millet was needed and would be strongly supported by the international sorghum and millet research community. Those discussions led to the September 1996 International Conference on Genetic Improvement of Sorghum and Pearl Millet. Grain sorghum and pearl millet are major food grains in the semiarid tropics of Africa, India, and South America. Sorghum ranks fifth among the world\u27s cereals, following wheat, maize, rice, and barley. F AO includes all millets together in its production estimates. Current estimates indicate that annual world sorghum production is approximately 61 million metric tons and world millet production is approximately 20 million metric tons. The inaugural speaker of this 1996 conference, Dr. Leland House, indicated global population is projected to increase to nine billion people by the year 2030 and is projected to increase most rapidly in the developing world. This will create a growing demand for food, as well as potential new market opportunities for food products developed from these basic grains

    IHG-1 increases mitochondrial fusion and bioenergetic function

    No full text
    Induced in high glucose-1 (IHG-1) is a conserved mitochondrial protein associated with diabetic nephropathy (DN) that amplifies profibrotic transforming growth factor (TGF)-β1 signaling and increases mitochondrial biogenesis. Here we report that inhibition of endogenous IHG-1 expression results in reduced mitochondrial respiratory capacity, ATP production, and mitochondrial fusion. Conversely, overexpression of IHG-1 leads to increased mitochondrial fusion and also protects cells from reactive oxygen species–induced apoptosis. IHG-1 forms complexes with known mediators of mitochondrial fusion—mitofusins (Mfns) 1 and 2—and enhances the GTP-binding capacity of Mfn2, suggesting that IHG-1 acts as a guanine nucleotide exchange factor. IHG-1 must be localized to mitochondria to interact with Mfn1 and Mfn2, and this interaction is necessary for increased IHG-1–mediated mitochondrial fusion. Together, these findings indicate that IHG-1 is a novel regulator of both mitochondrial dynamics and bioenergetic function and contributes to cell survival following oxidant stress. We propose that in diabetic kidney disease increased IHG-1 expression protects cell viability and enhances the actions of TGF-β, leading to renal proximal tubule dedifferentiation, an important event in the pathogenesis of this devastating condition.</jats:p
    corecore