80 research outputs found

    HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.

    Get PDF
    Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought. Recently, somatic substitution, insertion/deletion and rearrangement patterns, or 'mutational signatures', were associated with BRCA1/BRCA2 dysfunction. Herein we used a lasso logistic regression model to identify six distinguishing mutational signatures predictive of BRCA1/BRCA2 deficiency. A weighted model called HRDetect was developed to accurately detect BRCA1/BRCA2-deficient samples. HRDetect identifies BRCA1/BRCA2-deficient tumors with 98.7% sensitivity (area under the curve (AUC) = 0.98). Application of this model in a cohort of 560 individuals with breast cancer, of whom 22 were known to carry a germline BRCA1 or BRCA2 mutation, allowed us to identify an additional 22 tumors with somatic loss of BRCA1 or BRCA2 and 47 tumors with functional BRCA1/BRCA2 deficiency where no mutation was detected. We validated HRDetect on independent cohorts of breast, ovarian and pancreatic cancers and demonstrated its efficacy in alternative sequencing strategies. Integrating all of the classes of mutational signatures thus reveals a larger proportion of individuals with breast cancer harboring BRCA1/BRCA2 deficiency (up to 22%) than hitherto appreciated (∼1-5%) who could have selective therapeutic sensitivity to PARP inhibition

    Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015

    Get PDF
    The 14th St Gallen International Breast Cancer Conference (2015) reviewed new evidence on locoregional and systemic therapies for early breast cancer. This manuscript presents news and progress since the 2013 meeting, provides expert opinion on almost 200 questions posed to Consensus Panel members, and summarizes treatment-oriented classification of subgroups and treatment recommendation

    Signatures of mutational processes in human cancer.

    Get PDF
    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy

    Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

    Get PDF
    We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer

    Comparative Membranome Expression Analysis in Primary Tumors and Derived Cell Lines

    Get PDF
    Despite the wide use of cell lines in cancer research, the extent to which their surface properties correspond to those of primary tumors is poorly characterized. The present study addresses this problem from a transcriptional standpoint, analyzing the expression of membrane protein genes - the Membranome – in primary tumors and immortalized in-vitro cultured tumor cells. 409 human samples, deriving from ten independent studies, were analyzed. These comprise normal tissues, primary tumors and tumor derived cell lines deriving from eight different tissues: brain, breast, colon, kidney, leukemia, lung, melanoma, and ovary. We demonstrated that the Membranome has greater power than the remainder of the transcriptome when used as input for the automatic classification of tumor samples. This feature is maintained in tumor derived cell lines. In most cases primary tumors show maximal similarity in Membranome expression with cell lines of same tissue origin. Differences in Membranome expression between tumors and cell lines were analyzed also at the pathway level and biological themes were identified that were differentially regulated in the two settings. Moreover, by including normal samples in the analysis, we quantified the degree to which cell lines retain the Membranome up- and down- regulations observed in primary tumors with respect to their normal counterparts. We showed that most of the Membranome up-regulations observed in primary tumors are lost in the in-vitro cultured cells. Conversely, the majority of Membranome genes down-regulated upon tumor transformation maintain lower expression levels also in the cell lines. This study points towards a central role of Membranome genes in the definition of the tumor phenotype. The comparative analysis of primary tumors and cell lines identifies the limits of cell lines as a model for the study of cancer-related processes mediated by the cell surface. Results presented allow for a more rational use of the cell lines as a model of cancer

    RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers

    Get PDF
    Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3–stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME

    Enhanced response rate to pegylated liposomal doxorubicin in high grade serous ovarian carcinomas harbouring BRCA1 and BRCA2 aberrations

    Get PDF
    Abstract Background Approximately 10–15% of ovarian carcinomas (OC) are attributed to inherited susceptibility, the majority of which are due to mutations in BRCA1 or BRCA2 (BRCA1/2). These patients display superior clinical outcome, including enhanced sensitivity to platinum-based chemotherapy. Here, we seek to investigate whether BRCA1/2 status influences the response rate to single-agent pegylated liposomal doxorubicin (PLD) in high grade serous (HGS) OC. Methods One hundred and forty-eight patients treated with single-agent PLD were identified retrospectively from the Edinburgh Ovarian Cancer Database. DNA was extracted from formalin-fixed paraffin-embedded (FFPE) archival tumour material and sequenced using the Ion Ampliseq BRCA1 and BRCA2 panel. A minimum variant allele frequency threshold was applied to correct for sequencing artefacts associated with formalin fixation. Results A superior response rate to PLD was observed in patients with HGS OC who harboured variants likely to affect BRCA1 or BRCA2 function compared to the BRCA1/2 wild-type population (36%, 9 of 25 patients versus 12.1%, 7 of 58 patients; p = 0.016). An enhanced response rate was also seen in patients harbouring only the BRCA1 SNP rs1799950, predicted to be detrimental to BRCA1 function (50%, 3 of 6 patients versus 12.1%, 7 of 58 patients; p = 0.044). Conclusions These data demonstrate that HGS OC patients with BRCA1/2 variants predicted damaging to protein function experience superior sensitivity to PLD, consistent with impaired DNA repair. Further characterisation of rs1799950 is now warranted in relation to chemosensitivity and susceptibility to developing ovarian carcinoma

    Somatic mutations reveal asymmetric cellular dynamics in the early human embryo.

    Get PDF
    Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis

    Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    Full text link
    • …
    corecore