28 research outputs found
Building the First Galaxies -- Chapter 2. Starbursts Dominate The Star Formation Histories of 6 < z <12 Galaxies
We use SEDz* -- a code designed to chart star formation histories (SFHs) of
6<z<12 galaxies -- to analyze the SEDs of 894 galaxies with deep JWST/NIRCam
imaging by JADES in the GOODS-S field. We show how SEDz* matches observed SEDs
using stellar-population templates, graphing the contribution of each
epoch-by-epoch to confirm the robustness of the technique. Very good SED fits
for most SFHs demonstrates the compatibility of the templates with stars in the
first galaxies -- as expected, because their light is primarily from
main-sequence A-stars, free of post-main-sequence complexity and insensitive to
heavy-element compositions. We confirm earlier results from Dressler(2023): (1)
Four types of star formation histories: SFH1 -- burst; SFH2 -- stochastic; SFH3
-- `contiguous' (3-epochs); and SFH4 -- `continuous' (4-6 epochs); (2)
Starbursts -- both single and multiple -- are predominate (~70%) in this
critical period of cosmic history, although longer SFHs (0.5-1.0 Gyr)
contribute one-third of the accumulated stellar mass. These 894 SFHs contribute
log M/Msun = 11.14, 11.09, 11.00, and 10.60 for SFH1-4, respectively, adding up
to 4x10^11 Msun by z=6 for this field. We suggest that the absence of rising
SFHs could be explained as an intense dust-enshrouded phase of star formation
lasting tens of Myr that preceded each of the SFHs we measure. We find no
strong dependencies of SFH type with the large-scale environment, however, the
discovery of a compact group of 30 galaxies, 11 of which had first star
formation at z=11-12, suggests that long SFHs could dominate in rare, dense
environments.Comment: Accepted for publication in the Astrophysical Journa
Pre--Main-Sequence stellar populations across Shapley Constellation III. I. Photometric Analysis and Identification
We present our investigation of pre--main-sequence (PMS) stellar populations
in the Large Magellanic Cloud (LMC) from imaging with Hubble Space Telescope
WFPC2 camera. Our targets of interest are four star-forming regions located at
the periphery of the super-giant shell LMC 4 (Shapley Constellation III). The
PMS stellar content of the regions is revealed through the differential Hess
diagrams and the observed color-magnitude diagrams (CMDs). Further statistical
analysis of stellar distributions along cross-sections of the faint part of the
CMDs allowed the quantitative assessment of the PMS stars census, and the
isolation of faint PMS stars as the true low-mass stellar members of the
regions. These distributions are found to be well represented by a double
Gaussian function, the first component of which represents the main-sequence
field stars and the second the native PMS stars of each region. Based on this
result, a cluster membership probability was assigned to each PMS star
according to its CMD position. The higher extinction in the region LH 88 did
not allow the unambiguous identification of its native stellar population. The
CMD distributions of the PMS stars with the highest membership probability in
the regions LH 60, LH 63 and LH 72 exhibit an extraordinary similarity among
the regions, suggesting that these stars share common characteristics, as well
as common recent star formation history. Considering that the regions are
located at different areas of the edge of LMC 4, this finding suggests that
star formation along the super-giant shell may have occurred almost
simultaneously.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 19
figures (three omitted due to size limitations, without affecting the
comprehension of the manuscript
PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar
(Abridged) We investigate the impact of radiative feedback from massive stars
on their natal cloud and focus on the transition from the HII region to the
atomic PDR (crossing the ionisation front (IF)), and the subsequent transition
to the molecular PDR (crossing the dissociation front (DF)). We use
high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST
to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science
Program. The NIRSpec data reveal a forest of lines including, but not limited
to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence
lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and
their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from
H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the
first time towards a PDR. Their spatial distribution resolves the H and He
ionisation structure in the Huygens region, gives insight into the geometry of
the Bar, and confirms the large-scale stratification of PDRs. We observe
numerous smaller scale structures whose typical size decreases with distance
from Ori C and IR lines from CI, if solely arising from radiative recombination
and cascade, reveal very high gas temperatures consistent with the hot
irradiated surface of small-scale dense clumps deep inside the PDR. The H2
lines reveal multiple, prominent filaments which exhibit different
characteristics. This leaves the impression of a "terraced" transition from the
predominantly atomic surface region to the CO-rich molecular zone deeper in.
This study showcases the discovery space created by JWST to further our
understanding of the impact radiation from young stars has on their natal
molecular cloud and proto-planetary disk, which touches on star- and planet
formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&
PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
(Abridged) Mid-infrared observations of photodissociation regions (PDRs) are
dominated by strong emission features called aromatic infrared bands (AIBs).
The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 m. The
most sensitive, highest-resolution infrared spectral imaging data ever taken of
the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an
inventory of the AIBs found in the Orion Bar, along with mid-IR template
spectra from five distinct regions in the Bar: the molecular PDR, the atomic
PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of
the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288).
We extract five template spectra to represent the morphology and environment of
the Orion Bar PDR. The superb sensitivity and the spectral and spatial
resolution of these JWST observations reveal many details of the AIB emission
and enable an improved characterization of their detailed profile shapes and
sub-components. While the spectra are dominated by the well-known AIBs at 3.3,
6.2, 7.7, 8.6, 11.2, and 12.7 m, a wealth of weaker features and
sub-components are present. We report trends in the widths and relative
strengths of AIBs across the five template spectra. These trends yield valuable
insight into the photochemical evolution of PAHs, such as the evolution
responsible for the shift of 11.2 m AIB emission from class B in
the molecular PDR to class A in the PDR surface layers. This
photochemical evolution is driven by the increased importance of FUV processing
in the PDR surface layers, resulting in a "weeding out" of the weakest links of
the PAH family in these layers. For now, these JWST observations are consistent
with a model in which the underlying PAH family is composed of a few species:
the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars
22 pags., 8 figs., 1 tab.Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter-and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.Support for JWST-ERS program ID 1288 was provided through grants from the STScI under NASA contract NAS5-03127 to STScI (K.G., D.V.D.P., M.R.), Univ. of Maryland (M.W., M.P.), Univ. of Michigan (E.B., F.A.), and Univ. of Toledo (T.S.-Y.L.). O.B. and E.H. are supported by the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES, and through APR grants 6315 and 6410 provided by CNES. E. P. and J.C. acknowledge support from the National Science and
Engineering Council of Canada (NSERC) Discovery Grant program (RGPIN-2020-06434 and RGPIN-2021-04197 respectively). E.P. acknowledges support from a Western Strategic Support Accelerator Grant (ROLA ID 0000050636). J.R.G. and S.C. thank the Spanish MCINN for funding support under grant PID2019-106110GB-I00. Work by M.R. and Y.O. is carried out within the Collaborative Research Centre 956, subproject C1, funded by the Deutsche Forschungsgemeinschaft (DFG)—project ID 184018867. T.O. acknowledges support from JSPS Bilateral Program, grant No. 120219939. M.P. and M.W. acknowledge support from NASA Astrophysics Data Analysis Program award #80NSSC19K0573. C.B. is grateful for an appointment at NASA Ames Research Center through the San José State University Research Foundation (NNX17AJ88A) and acknowledges support from the Internal Scientist Funding Model (ISFM) Directed Work Package at
NASA Ames titled: “Laboratory Astrophysics—The NASA Ames PAH IR Spectroscopic Database.”Peer reviewe