1,974 research outputs found
k-d Darts: Sampling by k-Dimensional Flat Searches
We formalize the notion of sampling a function using k-d darts. A k-d dart is
a set of independent, mutually orthogonal, k-dimensional subspaces called k-d
flats. Each dart has d choose k flats, aligned with the coordinate axes for
efficiency. We show that k-d darts are useful for exploring a function's
properties, such as estimating its integral, or finding an exemplar above a
threshold. We describe a recipe for converting an algorithm from point sampling
to k-d dart sampling, assuming the function can be evaluated along a k-d flat.
We demonstrate that k-d darts are more efficient than point-wise samples in
high dimensions, depending on the characteristics of the sampling domain: e.g.
the subregion of interest has small volume and evaluating the function along a
flat is not too expensive. We present three concrete applications using line
darts (1-d darts): relaxed maximal Poisson-disk sampling, high-quality
rasterization of depth-of-field blur, and estimation of the probability of
failure from a response surface for uncertainty quantification. In these
applications, line darts achieve the same fidelity output as point darts in
less time. We also demonstrate the accuracy of higher dimensional darts for a
volume estimation problem. For Poisson-disk sampling, we use significantly less
memory, enabling the generation of larger point clouds in higher dimensions.Comment: 19 pages 16 figure
Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae
The use of Green Fluorescent Protein (GFP) as a reporter
for expression transgenes opens the way to several new
experimental strategies for the study of gene regulation in
sea urchin development. A GFP coding sequence was associated
with three different previously studied cis-regulatory
systems, viz those of the SM50 gene, expressed in skeletogenic mesenchyme, the CyIIa gene, expressed in archenteron, skeletogenic and secondary mesenchyme, and the
Endo16 gene, expressed in vegetal plate, archenteron and
midgut. We demonstrate that the sensitivity with which
expression can be detected is equal to or greater than that
of whole-mount in situ hybridization applied to detection
of CAT mRNA synthesized under the control of the same
cis-regulatory systems. However, in addition to the
important feature that it can be visualized nondestructively
in living embryos, GFP has other advantages. First, it freely diffuses even within fine cytoplasmic cables, and thus reveals connections between cells, which in sea urchin
embryos is particularly useful for observations on regulatory systems that operate in the syncytial skeletogenic mesenchyme. Second, GFP expression can be dramatically visualized in postembryonic larval tissues. This brings postembryonic larval developmental processes for the first time within the easy range of gene transfer analyses. Third, GFP permits identification and segregation of embryos in which the clonal incorporation of injected DNA has occurred in any particular desired region of the embryo. Thus, we show explicitly that, as expected, GFP transgenes are incorporated in the same nuclei together with other transgenes with which they are co-injected
Gunrock: GPU Graph Analytics
For large-scale graph analytics on the GPU, the irregularity of data access
and control flow, and the complexity of programming GPUs, have presented two
significant challenges to developing a programmable high-performance graph
library. "Gunrock", our graph-processing system designed specifically for the
GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on
operations on a vertex or edge frontier. Gunrock achieves a balance between
performance and expressiveness by coupling high performance GPU computing
primitives and optimization strategies with a high-level programming model that
allows programmers to quickly develop new graph primitives with small code size
and minimal GPU programming knowledge. We characterize the performance of
various optimization strategies and evaluate Gunrock's overall performance on
different GPU architectures on a wide range of graph primitives that span from
traversal-based algorithms and ranking algorithms, to triangle counting and
bipartite-graph-based algorithms. The results show that on a single GPU,
Gunrock has on average at least an order of magnitude speedup over Boost and
PowerGraph, comparable performance to the fastest GPU hardwired primitives and
CPU shared-memory graph libraries such as Ligra and Galois, and better
performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing
(TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance
Graph Processing Library on the GPU
Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA
The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation
We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation
since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with
spectroscopic redshifts drawn from the XMM Cluster Survey first data release
(XCS-DR1). This is the first study spanning this redshift range using a single,
large, homogeneous cluster sample. Using an orthogonal regression technique, we
find no evidence for evolution in the slope or intrinsic scatter of the
relation since z~1.5, finding both to be consistent with previous measurements
at z~0.1. However, the normalisation is seen to evolve negatively with respect
to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09}
(T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero
evolution case. We see milder, but still negative, evolution with respect to
self-similar when using a bisector regression technique. We compare our results
to numerical simulations, where we fit simulated cluster samples using the same
methods used on the XCS data. Our data favour models in which the majority of
the excess entropy required to explain the slope of the L_X-T relation is
injected at high redshift. Simulations in which AGN feedback is implemented
using prescriptions from current semi-analytic galaxy formation models predict
positive evolution of the normalisation, and differ from our data at more than
5 sigma. This suggests that more efficient feedback at high redshift may be
needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added
references to match published versio
TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms
The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD^+ neurons that represent ≈90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1+ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways
Non-Singular Solutions for S-branes
Exact, non-singular, time-dependent solutions of Maxwell-Einstein gravity
with and without dilatons are constructed by double Wick rotating a variety of
static, axisymmetric solutions. This procedure transforms arrays of charged or
neutral black holes into s-brane (spacelike brane) solutions, i.e. extended,
short-lived spacelike defects. Along the way, new static solutions
corresponding to arrays of alternating-charge Reissner-Nordstrom black holes,
as well as their dilatonic generalizations, are found. Their double Wick
rotation yields s-brane solutions which are periodic in imaginary time and
potential large-N duals for the creation/decay of unstable D-branes in string
theory.Comment: 21 pages, 3 figure
Physical restraint in residential child care : the experiences of young people and residential workers
There have long been concerns about the use of physical restraint in residential care. This paper presents the findings of a qualitative study which explores the experiences of children, young people and residential workers about physical restraint. The research identifies the dilemmas and ambiguities for both staff and young people, and participants discuss the situations where they feel physical restraint is appropriate as well as their concerns about unjustified or painful restraints. They describe the negative emotions involved in restraint but also those situations where, through positive relationships and trust, restraint can help young people through unsafe situations
- …
