37 research outputs found

    Nodal area evolution in the fur trade : 1768-1821

    Get PDF
    The fur trade has a long and complex history in which several different fur trade companies have participated. Initially, concentrations of fur trade posts developed in certain areas throughout western Canada. Subsequently the locations of these posts were shifted around within these areas. The formation of these fur trade post concentrations and the later movement of posts is examined in four specific areas in Saskatchewan and Manitoba. A comparative analysis using geographical, historical and archaeological data is employed to determine why concentrations of posts developed where they did. Factors that contributed to the movement of posts within these areas are discussed. Competition was the main influencing factor in the formation of areas where concentrations of fur trade posts developed. Subsequently posts were moved within these areas due to competition and other factors that contributed to competition. These factors are discussed in relation to their relevance for future historical and archaeological investigations

    Bridging the technological divide: Stigmas and challenges with technology in digital brain health studies of older adults

    Get PDF
    The COVID-19 pandemic has increased adoption of remote assessments in clinical research. However, longstanding stereotypes persist regarding older adults\u27 technology familiarity and their willingness to participate in technology-enabled remote studies. We examined the validity of these stereotypes using a novel technology familiarity assessment

    The Three Rs: The Way Forward

    Get PDF
    This is the report of the eleventh of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM), which was established in 1991 by the European Commission. ECVAM\u27s main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine or replace the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures which would enable it to become well-informed about the state-of-the-art of non-animal test development and validation. and the potential for the possible incorporation of replacement alternative tests into regulatory procedures. It was decided that this would be best achieved by the organisation of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward

    Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya

    Get PDF
    BACKGROUND: In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups. METHODS: A cohort of over 1,800 participants from all age groups was selected randomly from over 350 houses in 10 villages stratified by topography and followed for two-and-a-half years. Participants were visited every two weeks and screened for clinical malaria, defined as an individual with malaria-related symptoms (fever [axillary temperature ≥ 37.5°C], chills, severe malaise, headache or vomiting) at the time of examination or 1–2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear. Individuals in the same cohort were screened for asymptomatic malaria infection during the low and high malaria transmission seasons. Parasite densities and temperature were used to define clinical malaria by age in the population. The proportion of fevers attributable to malaria was calculated using logistic regression models. RESULTS: Incidence of clinical malaria was highest in valley bottom population (5.0% cases per 1,000 population per year) compared to mid-hill (2.2% cases per 1,000 population per year) and up-hill (1.1% cases per 1,000 population per year) populations. The optimum cut-off parasite densities through the determination of the sensitivity and specificity showed that in children less than five years of age, 500 parasites per μl of blood could be used to define the malaria attributable fever cases for this age group. In children between the ages of 5–14, a parasite density of 1,000 parasites per μl of blood could be used to define the malaria attributable fever cases. For individuals older than 14 years, the cut-off parasite density was 3,000 parasites per μl of blood. CONCLUSION: Clinical malaria case definitions are affected by age and endemicity, which needs to be taken into consideration during evaluation of interventions

    Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

    Get PDF
    BACKGROUND: Recent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence. METHODOLOGY: Indoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children. RESULTS: Ninety eight percent (98%) of An. gambiae s.s. and (99%) Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites. CONCLUSION: Malaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom

    Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Topographic parameters such as elevation, slope, aspect, and ruggedness play an important role in malaria transmission in the highland areas. They affect biological systems, such as larval habitats presence and productivity for malaria mosquitoes. This study investigated whether the distribution of local spatial malaria vectors and risk of infection with malaria parasites in the highlands is related to topography.</p> <p>Methods</p> <p>Four villages each measuring 9 Km<sup>2 </sup>lying between 1400-1700 m above sea level in the western Kenya highlands were categorized into a pair of broad and narrow valley shaped terrain sites. Larval, indoor resting adult malaria vectors and infection surveys were collected originating from the valley bottom and ending at the hilltop on both sides of the valley during the rainy and dry seasons. Data collected at a distance of ≤500 m from the main river/stream were categorized as valley bottom and those above as uphill. Larval surveys were categorized by habitat location while vectors and infections by house location.</p> <p>Results</p> <p>Overall, broad flat bottomed valleys had a significantly higher number of anopheles larvae/dip in their habitats than in narrow valleys during both the dry (1.89 versus 0.89 larvae/dip) and the rainy season (1.66 versus 0.89 larvae/dip). Similarly, vector adult densities/house in broad valley villages were higher than those within narrow valley houses during both the dry (0.64 versus 0.40) and the rainy season (0.96 versus 0.09). Asymptomatic malaria prevalence was significantly higher in participants residing within broad than those in narrow valley villages during the dry (14.55% vs. 7.48%) and rainy (17.15% vs. 1.20%) season. Malaria infections were wide spread in broad valley villages during both the dry and rainy season, whereas over 65% of infections were clustered at the valley bottom in narrow valley villages during both seasons.</p> <p>Conclusion</p> <p>Despite being in the highlands, local areas within low gradient topography characterized by broad valley bottoms have stable and significantly high malaria risk unlike those with steep gradient topography, which exhibit seasonal variations. Topographic parameters could therefore be considered in identification of high-risk malaria foci to help enhance surveillance or targeted control activities in regions where they are most needed.</p

    Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide-treated bed nets (ITNs) are known to be highly effective in reducing malaria morbidity and mortality. However, usage varies among households, and such variations in actual usage may seriously limit the potential impact of nets and cause spatial heterogeneity on malaria transmission. This study examined ITN ownership and underlying factors for among-household variation in use, and malaria transmission in two highland regions of western Kenya.</p> <p>Methods</p> <p>Cross-sectional surveys were conducted on ITN ownership (possession), compliance (actual usage among those who own ITNs), and malaria infections in occupants of randomly sampled houses in the dry and the rainy seasons of 2009.</p> <p>Results</p> <p>Despite ITN ownership reaching more than 71%, compliance was low at 56.3%. The compliance rate was significantly higher during the rainy season compared with the dry season (62% vs. 49.6%). Both malaria parasite prevalence (11.8% vs. 5.1%) and vector densities (1.0 vs.0.4 female/house/night) were significantly higher during the rainy season than during the dry season. Other important factors affecting the use of ITNs include: a household education level of at least primary school level, significantly high numbers of nuisance mosquitoes, and low indoor temperatures. Malaria prevalence in the rainy season was about 30% lower in ITN users than in non-ITN users, but this percentage was not significantly different during the dry season.</p> <p>Conclusion</p> <p>In malaria hypo-mesoendemic highland regions of western Kenya, the gap between ITNownership and usage is generally high with greater usage recorded during the high transmission season. Because of the low compliance among those who own ITNs, there is a need to sensitize households on sustained use of ITNs in order to optimize their role as a malaria control tool.</p

    Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap.</p> <p>Methods</p> <p>The study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regression</p> <p>Results</p> <p>Habitat productivity estimates obtained by the two sampling methods differed significantly for all species except for <it>An</it>. <it>implexus</it>. For for <it>An</it>. <it>gambiae </it>s.l. and <it>An</it>. <it>funestus</it>, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species.</p> <p>Conclusion</p> <p>These findings suggest that the aerial sampler is the better of the two methods for estimating the productivity of <it>An</it>. <it>gambiae </it>s.l. and <it>An</it>. <it>funestus </it>in the western Kenya highlands and possibly other malaria endemic parts of Africa. This method has proven to be a useful tool for monitoring malaria vector populations and for control program design, and provides useful means for determining the most suitable sites for targeted interventions.</p
    corecore