43 research outputs found

    Sample size calculation for a stepped wedge trial.

    Get PDF
    BACKGROUND: Stepped wedge trials (SWTs) can be considered as a variant of a clustered randomised trial, although in many ways they embed additional complications from the point of view of statistical design and analysis. While the literature is rich for standard parallel or clustered randomised clinical trials (CRTs), it is much less so for SWTs. The specific features of SWTs need to be addressed properly in the sample size calculations to ensure valid estimates of the intervention effect. METHODS: We critically review the available literature on analytical methods to perform sample size and power calculations in a SWT. In particular, we highlight the specific assumptions underlying currently used methods and comment on their validity and potential for extensions. Finally, we propose the use of simulation-based methods to overcome some of the limitations of analytical formulae. We performed a simulation exercise in which we compared simulation-based sample size computations with analytical methods and assessed the impact of varying the basic parameters to the resulting sample size/power, in the case of continuous and binary outcomes and assuming both cross-sectional data and the closed cohort design. RESULTS: We compared the sample size requirements for a SWT in comparison to CRTs based on comparable number of measurements in each cluster. In line with the existing literature, we found that when the level of correlation within the clusters is relatively high (for example, greater than 0.1), the SWT requires a smaller number of clusters. For low values of the intracluster correlation, the two designs produce more similar requirements in terms of total number of clusters. We validated our simulation-based approach and compared the results of sample size calculations to analytical methods; the simulation-based procedures perform well, producing results that are extremely similar to the analytical methods. We found that usually the SWT is relatively insensitive to variations in the intracluster correlation, and that failure to account for a potential time effect will artificially and grossly overestimate the power of a study. CONCLUSIONS: We provide a framework for handling the sample size and power calculations of a SWT and suggest that simulation-based procedures may be more effective, especially in dealing with the specific features of the study at hand. In selected situations and depending on the level of intracluster correlation and the cluster size, SWTs may be more efficient than comparable CRTs. However, the decision about the design to be implemented will be based on a wide range of considerations, including the cost associated with the number of clusters, number of measurements and the trial duration

    Designing a stepped wedge trial: three main designs, carry-over effects and randomisation approaches.

    Get PDF
    BACKGROUND: There is limited guidance on the design of stepped wedge cluster randomised trials. Current methodological literature focuses mainly on trials with cross-sectional data collection at discrete times, yet many recent stepped wedge trials do not follow this design. In this article, we present a typology to characterise the full range of stepped wedge designs, and offer guidance on several other design aspects. METHODS: We developed a framework to define and report the key characteristics of a stepped wedge trial, including cluster allocation and individual participation. We also considered the relative strengths and weaknesses of trials according to this framework. We classified recently published stepped wedge trials using this framework and identified illustrative case studies. We identified key design choices and developed guidance for each. RESULTS: We identified three main stepped wedge designs: those with a closed cohort, an open cohort, and a continuous recruitment short exposure design. In the first two designs, many individuals experience both control and intervention conditions. In the final design, individuals are recruited in continuous time as they become eligible and experience either the control or intervention condition, but not both, and then provide an outcome measurement at follow-up. While most stepped wedge trials use simple randomisation, stratification and restricted randomisation are often feasible and may be useful. Some recent studies collect outcome information from individuals exposed a long time before or after the rollout period, but this contributes little to the primary analysis. Incomplete designs should be considered when the intervention cannot be implemented quickly. Carry-over effects can arise in stepped wedge trials with closed and open cohorts. CONCLUSIONS: Stepped wedge trial designs should be reported more clearly. Researchers should consider the use of stratified and/or restricted randomisation. Trials should generally not commit resources to collect outcome data from individuals exposed a long time before or after the rollout period. Though substantial carry-over effects are uncommon in stepped wedge trials, researchers should consider their possibility before conducting a trial with closed or open cohorts

    Stepped wedge randomised controlled trials: systematic review of studies published between 2010 and 2014.

    Get PDF
    BACKGROUND: In a stepped wedge, cluster randomised trial, clusters receive the intervention at different time points, and the order in which they received it is randomised. Previous systematic reviews of stepped wedge trials have documented a steady rise in their use between 1987 and 2010, which was attributed to the design's perceived logistical and analytical advantages. However, the interventions included in these systematic reviews were often poorly reported and did not adequately describe the analysis and/or methodology used. Since 2010, a number of additional stepped wedge trials have been published. This article aims to update previous systematic reviews, and consider what interventions were tested and the rationale given for using a stepped wedge design. METHODS: We searched PubMed, PsychINFO, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Web of Science, the Cochrane Library and the Current Controlled Trials Register for articles published between January 2010 and May 2014. We considered stepped wedge randomised controlled trials in all fields of research. We independently extracted data from retrieved articles and reviewed them. Interventions were then coded using the functions specified by the Behaviour Change Wheel, and for behaviour change techniques using a validated taxonomy. RESULTS: Our review identified 37 stepped wedge trials, reported in 10 articles presenting trial results, one conference abstract, 21 protocol or study design articles and five trial registrations. These were mostly conducted in developed countries (n = 30), and within healthcare organisations (n = 28). A total of 33 of the interventions were educationally based, with the most commonly used behaviour change techniques being 'instruction on how to perform a behaviour' (n = 32) and 'persuasive source' (n = 25). Authors gave a wide range of reasons for the use of the stepped wedge trial design, including ethical considerations, logistical, financial and methodological. The adequacy of reporting varied across studies: many did not provide sufficient detail regarding the methodology or calculation of the required sample size. CONCLUSIONS: The popularity of stepped wedge trials has increased since 2010, predominantly in high-income countries. However, there is a need for further guidance on their reporting and analysis

    Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year

    Get PDF
    BACKGROUND: Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS: A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS: We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS: Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases

    Effectiveness of an intervention to facilitate prompt referral to memory clinics in the United Kingdom: Cluster randomised controlled trial

    Get PDF
    Background Most people with dementia do not receive timely diagnosis, preventing them from making informed plans about their future and accessing services. Many countries have a policy to increase timely diagnosis, but trials aimed at changing general practitioner (GP) practice have been unsuccessful. We aimed to assess whether a GP’s personal letter, with an evidence-based leaflet about overcoming barriers to accessing help for memory problems—aimed at empowering patients and families—increases timely dementia diagnosis and patient presentation to general practice. Methods and finding Multicentre, cluster-randomised controlled trial with raters masked to an online computer-generated randomisation system assessing 1 y outcome. We recruited 22 general practices (August 2013–September 2014) and 13 corresponding secondary care memory services in London, Hertfordshire, and Essex, United Kingdom. Eligible patients were aged ≥70 y, without a known diagnosis of dementia, living in their own homes. There were 6,387 such patients in 11 intervention practices and 8,171 in the control practices. The primary outcome was cognitive severity on Mini Mental State Examination (MMSE). Main secondary outcomes were proportion of patients consulting their GP with suspected memory disorders and proportion of those referred to memory clinics. There was no between-group difference in cognitive severity at diagnosis (99 intervention, mean MMSE = 22.04, 95% confidence intervals (CIs) = 20.95 to 23.13; 124 control, mean MMSE = 22.59, 95% CI = 21.58 to 23.6; p = 0.48). GP consultations with patients with suspected memory disorders increased in intervention versus control group (odds ratio = 1.41; 95% CI = 1.28, 1.54). There was no between-group difference in the proportions of patients referred to memory clinics (166, 2.5%; 220, 2.7%; p = .077 respectively). The study was limited as we do not know whether the additional patients presenting to GPs had objective as well as subjective memory problems and therefore should have been referred. In addition, we aimed to empower patients but did not do anything to change GP practice. Conclusions Our intervention to access timely dementia diagnosis resulted in more patients presenting to GPs with memory problems, but no diagnoses increase. We are uncertain as to the reason for this and do not know whether empowering the public and targeting GPs would have resulted in a successful intervention. Future interventions should be targeted at both patients and GPs. Trial registration Current Controlled Trials ISRCTN1921687

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore